
Introduction to Git & GitHub

Aim

1. To set up and become familiar with the course practices for project releases
2. Get an introduction into how to use git effectively

Before starting your project repository, you must have completed the following
tasks as a preparation.

0. Learn Git!

Watch the following videos by Hussein to familiarise yourself with git

Git videos - Google Drive

1. Sign up for GitHub

GitHub is a version control platform (like Bitbucket or GitLab) that uses git. It is a
great way for developers to collaborate with one another. It will be the primary
source of starter code distribution as well as where you will submit project source
code and reports before being marked by your mentors. You will have to create an
account here before you can start. Getting familiar with GitHub and how to use it is
the aim of this lab.

Instructions:

• I DON’T have an account on GitHub: Create an account at GitHub using either your
student email (zID@student.unsw.edu.au) or your personal email.

o Make sure to verify your email address. If you do not get an email straight
away, go to https://github.com/settings/emails and click resend

• I ALREADY have an account on GitHub: Continue to the next step.

2. SENG2021 GitHub Organisation Membership

A GitHub organisation is a way that people can work together and have group
ownership of repositories. You will be added to our organisation where we will
release the starter code and solutions.

Instructions:

1. Follow the link and sign in. First with your cse credentials (if the Authentication
required alert box is shown), then click the Sign in to GitHub button and use your
GitHub credentials https://cgi.cse.unsw.edu.au/~se2021/github/run.cgi/login

2. Go to https://github.com/orgs/unsw-se2021/invitation to accept the invitation to join
the organisation (invitation may take up to few minutes)

3. Click Join unsw-se2021 and you should now be part of the organisation :)

3. Add your ssh key

There are two ways to authenticate with GitHub when you are working on your own
machine:

1. Use your username and password every time
2. Authenticate using your SSH key which effectively links a certain machine to GitHub

Option 1 can get quite tedious when working consistently so we will be using the
second option. Open up a terminal and run the following commands in terminal (use
the email you have used for GitHub):

Instructions:

1. ssh-keygen -t rsa -C "github_email@example.com"
2. Hit Enter 3 times to accept default location and skip the password creation step.

(You can ignorethe output of this command)
3. cat ~/.ssh/id_rsa.pub
4. Copy the entire output of the above command, including the ssh-rsa at the start
5. Go to https://github.com/settings/keys and click New SSH Key

6. Enter your name or your device’s name as the title and paste the key (copied in the
above step) into the text field. It should look something like below

NOTE: You will have to repeat this process if you change machines.

PART 1 - GitHub Exercises (5 marks)

0. Install git

Throughout the course you will need to be comfortable with git. It comes pre-
installed on most linux releases and is already installed on the CSE machines. To
check if git is installed on your local machine use the command

git status

If it is installed you will see something like

fatal: Not a git repository (or any of the parent directories):

If you do not have git installed, you will see something like

bash: git: command not recognized

If this is the case, you will have to set it up using the following instructions

• Linux - Follow instructions at https://git-scm.com/download/linux
• Mac - brew install git

Once it has been installed, we also have to configure git.

Instructions:

1. Try git status to check whether git is installed
o If not, follow one of the above instructions depending on your OS
2. Configure git if you have not used it before with the following commands (including

the quotes)

git config --global user.name "Your Name"

git config --global user.email "github_email@example.com"

1. Create your project repo

Creating and Cloning a repo (a repo is just a directory that is linked with git) is how
the codebase is linked from GitHub to your local computer so changes you make
can be saved and shared with others. It is the final step before you can start making
changes and contributing. A repo can be cloned at any time by someone who has
access, so they can start working whenever they want. When a repo is cloned, all
code that is uploaded on the server is copied to a desired location on your local
machine.

This is the process you will follow get create your team and project repo. Make sure
only one member of the team is doing this to avoid multiple repos per team.

Instructions:

1. Go to https://cgi.cse.unsw.edu.au/~se2021/github/run.cgi
NOTE: You won’t be able to access the page if you have not accepted the invitation
to join the organisation.

2. Select Teams and under Tutorial select T11A. This is the parent project repo.

3. Add your team name and click Create

4. Follow the link that is shown in the green banner flashed at the top of the screen to
go to the place where you can manage your team

5. Use Members tab to add other members of your team.

NOTE: You won’t be able to invite students if they are not registered to join the
organisation.

6. Go to Repository home page (https://github.com/unsw-se2021) and create new
repository for your project. Make sure it is set to Private.

7. Go back to team page (https://github.com/orgs/unsw-se2021/teams/<team-
name>/repositories) and add the created repository.

8. Click on the Clone or download button.

9. If the title for the dropdown box is Clone with HTTPS click on the Use SSH link on
the right. The box should look like the below

10. Copy the link in the text box

11. Open a Terminal and navigate to the folder you want the lab to be in

12. git clone [link] (Replace [link] with the copied link from above step)

13. Type ls to ensure the folder has been copied correctly

14. cd [repo_name] to navigate into the cloned repo

15. Type ls again to see the copied files.

Quick Tip: Viewing your Git history on GitHub

GitHub provides a decent visualisation of your repo’s commit history, which you
can access at Your Repo > Insights > Network as shown below. Your initial history

will look different to what is displayed here, but watch it evolve as you walkthrough
each of the steps below (refresh the page after every pushcommand).

2. Make your first commit

Now that you have cloned the repo, you are ready to work on the codebase locally.

A commit is an update of the remote (on the GitHub’s server) state of the repository.
It saves changes that you have made and can be given a message to describe
those changes. A good use of git involves a lot of commits with detailed messages.

Before you can commit, you have to do what is called staging your changes, which
effectively tells git what changes you actually want to commit and what changes
you don’t at the moment.

Commits are often followed by pushing which is how git actually uploads your
commits to the remote server.

The command to commit and push are as follows:

git add [files_to_commit] # Stage

git commit -m "Detailed message describing the changes" # Commit

git push # Push

Summary:

1. Add a new file called first.txt in the repo directory
2. Add a line of text to the first.txt file using your favourite text editor and save.
3. Go back to your terminal and enter the following commands:

git add first.txt`

git commit -m "Added a line to the first file"

git push

4. MAKE SURE YOU UNDERSTAND THE PURPOSE OF EACH OF THE 3 ABOVE
COMMANDS! If you are unsure about any of them, ask your tutor or rewatch the
tutorial videos.

5. Go back to GitHub and confirm that your changes have been pushed to the server.

3. Do your first pull

Usually when you are using git, it is in a team. That means that you will not be the
only one who is making the changes. If someone else makes a change and pushes
it to the server, your local repo will not have the most up to date version of the files.
Luckily, git makes it easy to update our local copy with the git pull command.

This command checks the remote server that your local repo is linked to and makes
sure that all of your files are up to date. This ensures that you don’t accidentally do
things like implement the same thing someone else has already done and also lets
you use other peoples work (eg new functions) when developing.

Pulling regularly is one of the most important practices in git!

Unfortunately, at the moment you are just working individually. But GitHub still gives
us a nice way to practice a git pull.

Summary:

1. View your repo on GitHub.
2. Click on the first.txt file
3. Click the small ‘edit’ pencil icon in the top right
4. Make any change you want to this file and click the Commit Changes button at the

bottom of the screen
5. This will have changed the first.txt file on the server but not on your local

environment (check it!). To fetch these changes use the git pull command from
your terminal

6. Confirm that your version of first.txt now has the changes you made on the web
page

4. Create your first branch

Branches are a vital part of git and are used so people can work on separate parts
of the codebase and not interfere with one another or risk breaking a product that is

visible to the client. Breaking something on one branch does not have an impact on
any other.

Good use of git will involve separating parts of the project that can be worked on
separately and having them in their own feature branch. These branches can then
be merged when they are ready.

Useful commands for branches:

git checkout -b [new_branch_name] # Create a new branch and switch to it

git branch # List all current branches

git checkout [branch_name] # Switch to an existing branch

Summary:

1. Make your new branch with: git checkout -b first_new_branch
2. List your branches to see that you have indeed swapped (use the above

commands)
3. Make another change to the first.txt file
4. Try to push your changes to the server using the commands you learnt in the Make

your first commit section
5. The above step should have given you the following error:

— fatal: The current branch first_new_branch has no upstream branch.
This means that the branch you tried to make a change on doesn’t exist on the
server yet which makes sense because we only created it on our local machine.

6. To fix this, we need to add a copy of our branch on the server and link them up so
git knows that this new branch maps to a corresponding branch on the server

7. git push -u origin first_new_branch

NOTE: The final step above must be run on the 1st push to every new branch that
you have created on your local machine. After you have run this once, you should
go back to simply using git push

5. Merge your two branches

Merging branches is used to combine the work done on two different branches and
is where gits magic really comes in. Git will compare the changes done on both
branches and decide (based on what changes were done to what sections of the
file and when) what to keep. Merges are most often done when a feature branch is
complete and ready to be integrated with the master branch.

Since we have finished all that we are going to do (and think there are no bugs) on
our first_new_branchwe can merge it back into master. It is a strong
recommendation to have a version of the code that at least runs on master so
people are not completely blocked. (DO NOT PUSH BROKEN CODE TO MASTER)

Another recommendation is to merge master into your branch before merging your
branch into master as this will ensure that any merge into master will go smoothly.

Commands for merging two branches

git merge [target] # Merge the target branch into current

NOTE: A successful merge automatically uses the commits from the source branch.
This means that the commits have already been made, you just need to push these
to the server (git push)

Summary:

1. Switch back to the master branch using one of the commands fom the above
section

2. Merge in the changes you made in the other branch
git merge first_new_branch

3. Push the successful merge to the server to update the master branch on the server

6. Engineer a merge conflict :(

Merge conflicts are the one necessary downside to git. Luckily, they can be avoided
most of the time through good use of techniques like branches and regular
commits, pushes and pulls. They happen when git cannot work out which particular
change to a file you really want.

For this step we will engineer one so you can get a taste of what they are, how they
occur and how to fix them. This will be the LAST time you will want one. The
process may seem involved but it is quite common when multiple people are
working at a time.

Summary: (All commands have been presented above)

1. Add a line to the top of the first.txt file (on master branch)
2. Add, commit and push your changes
3. Switch to your first_new_branch
4. Add a different line to the top of the first.txt file
5. Add, commit and push your changes
6. Merge master into your current branch
7. This sequence of steps should made a merge conflict at the top of

the first.txt with the following output
Auto-merging first.txt
CONFLICT (content): Merge conflict in first.txt
Automatic merge failed; fix conflicts and then commit the result.

7. Resolve your merge conflict :)

Resolving a merge conflict is as simple as editing the file normally, choosing what
you want to have in the places git wasn’t sure.

This is a very simple example, but merge conflicts can be large and in many
different places across a file/repo. If possible, avoid merge conflicts. This can be
done by regularly pulling from the server to update your local copy and by making
your branches in such a way that they handle only one feature/section of the code.

A merge conflict is physically shown in the file in which it occurs.
<<<<<<< marks the beginning of the conflicting changes made on
the current (merged into) branch.
======= marks the beginning of the conflicting changes made on
the target (merged) branch.
>>>>>>> marks the end of the conflict zone.

E.g.,

This line could be merged automatically.

There was no change here either

<<<<<<< current:sample.txt

Merges are too hard. This change was on the 'merged into' branch

=======

Merges are easy. This change was made on the 'merged' branch

>>>>>>> target:sample.txt

This is another line that could be merged automatically

This above example could be solved in many ways, one way would be to just use
the changes made on the target branch and delete those made on the current
branch. Once we have decided on this we just need to remove the syntax. The
resolved file would be as follows

This line could be merged automatically.

There was no change here either

Merges are easy. This change was made on the 'merged' branch

This is another line that could be merged automatically

We would then just commit the resolved file and the merge conflict is finished!

Summary:

1. Open the first.txt file and decide which (or both) changes you want to keep
2. Remove the merge conflict syntax
3. Add, commit and push the resolved merge conflict
4. en up first.txt on master branch - you see that mMerging master branch

into first_new_branchhas only affected first_new_branch.
5. Now, merge first_new_branch into master to synchronise the two branches (this

step should not cause any conflicts), then push the changes.
6. Check your git history visualisation on GitHub :)

Testing

You can run the test_git.sh file to check whether you have done most of the git
exercises. Make sure you checkout the master branch before running this script.

