DevOps@ Domain

Jordan Simonovski Nikita Gorenbukh

What is DevOps, really?

 DevOps is the practice of operations and development engineers participating together in the entire service lifecycle, from design through the development process to production support.

What Kind of apps do we Write?

So, how Does all of this fit together?

```
FROM node:8.1.4-slim
 2
     EXPOSE 3000
     ENV DEBIAN_FRONTEND=noninteractive
     ENV APP_DIR /var/www
     ENV TZ Australia/Sydney
     ENTRYPOINT ["/usr/local/bin/dumb-init", "--"]
     RUN mkdir -p ${APP_DIR}
     WORKDIR ${APP_DIR}
13
     # Add needed files (.npmrc needed for npm login)
     COPY yarn.lock .npmrc package.json ./
     RUN yarn install --quiet
     # Add an empty .env file (if it doesn't exist)
     RUN touch .env
20
     # Add app files
     COPY . ./
23
24
     # Build it
     RUN npm run build
26
    # Remove files in the cache directory
     RUN rm -f ci/cache/*
29
30
     CMD ["yarn", "run", "start:prod"]
```

- Introducing the Dockerfile
- Create an image once and run anywhere.
- Lets us change the underlying infra.

So, how do things get deployed?

It all starts with our devs:

- Create feature branch
- Write Code
- Write Tests
- Raise Pull Request

GitHub Workflow

What happens after code gets merged?

How do we make our deployments easier?

Introducing Deploy Bot

- Serverless Slack Bot
- Written in Python/Flask
- Using the Zappa Framework
- Doesn't cost anything when it's not being used
- Deploy from anywhere!

Linux Infrastructure

Nomad Server

Linux Infra (Cont.)

Nomad Agents

Scaling Containers

- Service is started with metadata metrics per task group
 - a. $count_max = 10$
 - b. count_min = 2
 - c. scaledown_decrease_count = 1
 - d. scaledown_threshold = 20
 - e. scaleup_increase_count = 2
 - f. scaleup_threshold = 40
 - g. threshold_metric = AverageCpuPercent
 - h. ...
- 2. Service runs on each Nomad Agent
 - a. Sends metrics to Cloudwatch
- 3. Lambda executes
 - a. Checks metrics against ruleset
 - b. Scales up/down

How do we simplify all of this complexity?

```
node('docker') {
    checkout scm
   if(!do_deploy)
        return false
   stage("ECR") {
       try {
            sh returnStatus: true, script: "aws --region ${region} ecr create-repository --repository-name ${app_name}"
       catch (Exception e) {
            echo "Repository already exists. Skipping create."
   stage("Cloudformation") {
        stack_name = "${environment}-${app_name}"
       cf_template = "${environment}-cloudformation.yaml"
       outputs = cfnUpdate stack: stack_name, file: cf_template
        custom_params << ["IAM_ROLE": outputs.RoleArn ]</pre>
   stage('Docker') {
        docker.withRegistry(env.AWS_ECR) {
                npmLogin credentialId: "n/a"
           def container = docker.build("${app name}")
                container.push(version)
   stage("Deploy") {
        envFile = loadenv.getEnvFile(environment: environment)
        docker_env = loadenv filename: envFile, decrypt: true, extraParams: custom_params
        appDeploy(environment: environment, appName: app_name, dockerEnv: docker_env, version: version)
```

What we get

- Windows + Linux containers
- Fast container scale-up
- Fast scale-out
- Cheap instances via Spot, managing spot termination
- Historical metrics job CPU vs deploy versions
- IAM Policies
- Fast deploy/rollback times
- 1hr to build new stacks

We also love to code!

github.com/cvandal/nomad-ui

Windows Infrastructure

Robot Army

Octopus Deploy

- Environments
- Projects
- Project Deployment
- Processes
- Step templates

Environments

Projects

Project Deployment

Processes

Deployment process

Step Templates

Robot Army

Cluster Definition

```
RobotPlatoon stagingNikita

Ensure = "Present"
Name = "s-nikita"
Team = "DevOps"
OctopusProject = "Nikita"
PlatoonVersion = "ra3"
Sleepytime = "Yes"
InstanceType = "t2.nano"
OctopusVersion = "3.0"
PublicInstances = $false
VPC = "Staging"
HealthCheckEndpoint = "TCP:80"
minSize = 1
maxSize = 1
```


So, DevOps at Domain

- Incredibly fun
- Nothing like traditional operations
- Lots of coding involved
- Requires a holistic view of what we run and how we're running it
- Always lots to learn
- Always on the bleeding edge

/DomainGroupOSS

/Domaincomau

tech.domain.com.au developer.domain.com.au

Thank you. Domain

Jordan Simonovski Nikita Gorenbukh