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1 Introduction

Randomized Algorithms

• Turing machines do not inherently have access to randomness.

• Assume algorithm is also given access apart to a stream of random bits.

• With r random bits, the probability space is the set of all 2r possible strings of random bits (with uniform
distribution).

Monte Carlo algorithms

Definition 1. • A Monte Carlo algorithm is an algorithm whose output is incorrect with probability at most
p.

• A one sided error means that an algorithm’s input is incorrect only on true outputs, or false outputs but not
both.

• A false negative Monte Carlo algorithm is always correct when it returns false.

Suppose we have an algorithm A for a decision problem which:

• If no-instance: returns “no”.

• If yes-instance: returns “yes” with probability p.

Algorithm A is a one-sided Monte Carlo algorithm with false negatives.

Problem
Suppose A is a one-sided Monte Carlo algorithm with false negatives, that with probability p returns “yes” when the
input is a yes-instance. How can we use A and design an a new algorithm which ensures a new success probability
of a constant C?

Let t = − ln(1−C)
p and repeat t times. Failure probability is

(1− p)t ≤ (e−p)t =
1

ept
= 1− C

via the inequality 1− x ≤ e−x.
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Amplification

Theorem 2. If a one-sided error Monte Carlo Algorithm has success probability at least p, then repeating it
independently d 1pe times gives constant success probability. In particular if p = 1

f(k) for some computable function

f , then we get an FPT one-sided error Monte Carlo Algorithm with additional f(k) overhead in the running time
bound.

2 Vertex Cover

For a graph G = (V,E) a vertex cover X ⊆ V is a set of vertices such that every edge is adjacent to a vertex in X.

Vertex Cover
Input: Graph G, integer k
Parameter: k
Question: Does G have a vertex cover of size k?

Theorem 3. There exists a randomized algorithm that, given a Vertex Cover instance (G, k), in time 2knO(1)

either reports a failure or finds a vertex cover on k vertices in G. Moreover, if the algorithm is given a yes-instance,
it returns a solution with constant probability.

Solution

Proof. • Pick an edge at random and then pick one of the endpoints of that edge with probability 1
2 .

• Repeating this k times finds a vertex cover with probability at least 1
2k

.

• Applying Theorem 2 gives a randomized FPT running time of 2k · nO(1).

3 Feedback Vertex Set

A feedback vertex set of a multigraph G = (V,E) is a set of vertices S ⊂ V such that G− S is acyclic.

Feedback Vertex Set
Input: Multigraph G, integer k
Parameter: k
Question: Does G have a feedback vertex of size k?

• Recall 5 simplification rules for Feedback Vertex Set.

Solution: Simplification

1. Loop: If loop at vertex v, remove v and decrease k by 1

2. Multiedge: Remove all edges of multiplicity greater than 2, to exactly 2.

3. Degree-1: If v has degree at most 1 then remove v.

4. Degree-2: If v has degree 2 with neighbors u,w then delete 2 edges uv, vw and replace with new edge uw.

5. Budget: If k < 0, terminate algorithm and return no.

Refer to Lecture 6 for soundness of simplification rules.

Lemma 4. Let G be a multigraph on n vertices, with minimum degree at least 3. Then, for every feedback vertex
set X of G, at least 1/3 of the edges have at least one end point in X.

Proof. The graph G has minimum degree 3, this means it has at least 3n/2 edges. Let G\X = F be the forest that
remains. There at most n− 1 edges in the forest F . This means that at least 1

3 of the edges are in X.
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Random Algorithm

Theorem 5. There is a randomized algorithm that, given a Feedback Vertex Set instance (G, k), in time 6knO(1)

either reports a failure or finds a feedback vertex set in G of at most k. Moreover, if the algorithm is given a
yes-instance, it returns a solution with constant probability.

Solution

Proof. • First apply simplification rules 1-5 in order to obtain a multigraph G′ with minimum degree at least
3 and we wish to find feedback vertex set X ′ of size k′.

• Lemma 4 implies with probability greater than 1
3 , a randomly chosen edge e has at least one endpoint in X ′.

So with probability greater than 1
2 ×

1
3 = 1

6 , a randomly chosen endpoint of e belongs to X ′.

• By inductive process, a recursive call finds a feedback vertex set in graph G′−{v} of size k′−1 with probability(
1
6

)k−1
. Hence X ′ can be found with probability at least

(
1
6

)k
.

• Applying Theorem 2 gives a randomized FPT running time of 6k · nO(1).

Lemma 6. Let G be a multigraph on n vertices, with minimum degree 3. For every feedback vertex set X, then at
least 1

2 of the edges of G have at least one endpoint in X.

Hint: Let H = G−X be a forest. The statement is equivalent to:

|E(G)\E(H)| > |V (H)| > |E(H)|

Let J ⊆ E(G) denote edges with one endpoint in X, and the other in V (H). Show:

|J | > |V (H)|

Solution

Proof. • Let V≤1, V2, V≥3 be set of vertices that have degree at most 1, exactly 2, and at least 3 respectively in
H.

• Since G has min degree 3 then each vertex in V≤1 contributes at least 2 edges to J . Each vertex V2 contributes
at least 1 edge to J .

• Note H is a forest, we inductively show |V≥3| < |V≤1|.

– Trivially true for empty forest and single vertex.

– Assume true for forests of size n− 1, i.e. |V ′≥3| < |V ′≤1|
– For any forest of size n, consider removing a leaf (which must always exist). If |V≥3| = |V ′≥3| + 1 then
|V≤1| = |V ′≤1|+ 1.

• This results in:
|E(G)\E(H)| ≥ |J | ≥ 2|V≤1|+ |V2| > |V≤1|+ |V2|+ |V≥3| = |V (H)|

Random Algorithm 2

Lemma 7. There exists a randomized algorithm that, given a Feedback Vertex Set instance (G, k), in time
4knO(1) either reports a failure or finds a path on k vertices in G. Moreover, if the algorithm is given a yes-instance,
it returns a solution with constant probability.

Corollary 8. Given a Feedback Vertex Set instance (G, k), in time 4knO(1) there is an algorithm that either reports
a failure or if given a yes-instance finds a feedback vertex set in G of size at most k with constant probability.
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4 Color Coding

Longest Path
A simple path is a sequence of edges which connect a sequence of distinct vertices.

Longest Path
Input: Graph G, integer k
Parameter: k
Question: Does G have a simple path of size k?

Problem

• Show that Longest Path is NP-hard.

Reduction from Hamiltonian Path with k = n− 1.

Color Coding

Lemma 9. Let U be a set of size n, and let X ⊆ U be a subset of size k. Let χ : U → [k] be a coloring of the
elements of U , chosen uniformly at random. Then the probability that the elements of X are colored with pairwise
distinct colors is at least e−k.

Proof. There are kn possible colorings χ and k!kn−k of them are injective on X. The lemma follows from the
inequality

k! > (k/e)k.

Colorful Path
A path is colorful if all vertices of the path are colored with pairwise distinct colors.

Lemma 10. Let G be an undirected graph, and let χ : V (G)→ [k] be a coloring of its vertices with k colors. There
exists a determinisitic algorithm that checks in time 2knO(1) whether G contains a colorful path on k vertices and,
if this is the case, returns one such path.

Solution

Proof. Parition V (G) into V1, ..., Vk subsets such that vertices in Vi are colored i.
Apply dynamic programming on nonempty S ⊆ {1, ..., k}. For u ∈

⋃
i∈S Vi let P (S, u) = true if there is a

colorful path with colors from S and u as an endpoint. We have the following:

• For |S| = 1, P (S, u) = true for u ∈ V (G) iff S = {χ(u)}.

• For |S| > 1

P (S, u) =

{∨
uv∈E(G) P (S\{χ(u)}, v) if χ(u) ∈ S

false otherwise

All values of P can be computed in 2knO(1) time and there exists a colorful k-path iff P ([k], v) is true for some
vertex v ∈ V (G).

Longest Path

Theorem 11. There exists a randomized algorithm that, given a Longest Path instance (G, k), in time (2e)knO(1)

either reports a failure or finds a path on k vertices in G. Moreover, if the algorithm is given a yes-instance, it
returns a solution with constant probability.
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5 Monotone Local Search

Exact Exponential Algorithms vs Parameterized Algorithms
Exact Exponential Algorithms

• Find exact solutions with respect to parameter n,
the input size.

• Feedback Vertex set O(1.7347n) [Fomin, Todinca
and Villanger 2015]

• Running Time: O(αnnO(1))

Parameterized Algorithms

• Include parameter k, commonly the solution size.

• Feedback Vertex Set: O(3.592k) [Kociumaka and
Pilipczuk 2013]

• Running Time: O(f(k) · nO(1))

Can we use Parameterized Algorithms to design fast Exact Exponential Algorithms?

Subset Problems

An implicit set system is a function Φ with:

• Input: instance I ∈ {0, 1}∗, |I| = N

• Output: set system (UI ,FI):

– universe UI , |UI | = n

– family FI of subsets of UI

Φ-Subset
Input: Instance I
Question: Is |FI | > 0

Φ-Extension
Input: Instance I, a set X ⊆ UI , and an integer k
Question: Does there exist a subset S ⊆ (UI\X) such that S ∪X ∈ FI and |S| ≤ k?

Algorithm
Suppose Φ-Extension has a O∗(ck) time algorithm B.

Algorithm for checking whether contains a set of size k

• Set t = max
(

0, ck−nc−1

)
• Uniformly at random select a subset X ⊆ UI of size t

• Run B(I,X, k − t)

Running time: [Fomin, Gaspers, Lokshtanov & Saurabh 2016]

O∗

((
n
t

)(
k
t

) · ck−t) = O∗
(

2− 1

c

)n

Intuition

Brute-force randomized algorithm

• Pick k elements of the universe one-by-one.

• Suppose FI contains a set of size k.
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Success probability:

k

n
· k − 1

n− 1
· ...·k − t

n− t
· ... · 2

n− (k − 2)

1

n− (k − 1)
=

1(
n
k

)

=

1

c

Theorem 12. If there exists an algorithm for Φ-Extension with running time cknO(1) then there exists a ran-
domized algorithm for Φ-Subset with running time (2− 1

c )n · nO(1)

• Can be derandomized at the expense of a multiplicative 2o(1) factor in the running time.

Theorem 13. For a graph G there exists a randomized algorithm which finds a smallest feedback vertex set in time(
2− 1

3.592

)n · nO(1) = 1.7217n · nO(1).
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Exercise 1

1-Regular Deletion
Input: Graph G = (V,E), integer k
Parameter: k
Question: Does there exist X ⊆ V with |X| ≤ k such that G−X is 1-regular?

• Design a randomized FPT algorithm with running time O∗(4k)

Solution 1

• If there is a vertex with degree 0, then remove it and reduce k by 1.

• If v has degree 1, remove all vertices at distance at most 2 from v, and reducing k by the number of vertices
at distance 2 from v.

• Graph now has minimum degree 2. If yes-instance then deletion set X is incident to at least |E|2 edges.

• Choose edge at random and then an endpoint of the chosen at at random for a 1
4 probability of selecting a

vertex in X.

Exercise 2

Triangle Packing
Input: Graph G, integer k
Parameter: k
Question: Does G have k-vertex disjoint triangles?

• Design a randomized FPT algorithm for Triangle Packing.
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Solution 2

• By considering a random 3k coloring χ of the vertices, Lemma 9 provides an algorithm to return a subset X
of size 3k are pairwise distinct with e−3k success probability.

• For a graph G and coloring χ : V (G) → [3k], in a similar manner to Lemma 10 we design an algorithm
that checks whether G contains a triangle packing on 3k vertices such that all vertices are pairwise distinctly
colored. We do the following:

– Enumerate though all possible ways of partitioning 3k colors into k bags of exactly 3 colors each. There
are exactly 3k!

(3!)kk!
of these ways.

– For a bag, let these colors be i, j, k and consider the vertex partition Vi, Vj , Vk. Using these vertices we
check if there exists a triangle using vertices from Vi ∪ Vj ∪ Vk such that each vertex is a different color.
This can be computed in time n3. Repeating this for all k bags only requires k · n3 time.

– Running time of this algorithm is still FPT.
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