10. Randomized Algorithms: color coding and monotone local search COMP6741: Parameterized and Exact Computation

Edward Lee ${ }^{2}$

Semester 2, 2017

Contents

1 Introduction 1
2 Vertex Cover 2
3 Feedback Vertex Set 2
4 Color Coding 4
5 Monotone Local Search 5

1 Introduction

Randomized Algorithms

- Turing machines do not inherently have access to randomness.
- Assume algorithm is also given access apart to a stream of random bits.
- With r random bits, the probability space is the set of all 2^{r} possible strings of random bits (with uniform distribution).

Monte Carlo algorithms

Definition 1. - A Monte Carlo algorithm is an algorithm whose output is incorrect with probability at most p.

- A one sided error means that an algorithm's input is incorrect only on true outputs, or false outputs but not both.
- A false negative Monte Carlo algorithm is always correct when it returns false.

Suppose we have an algorithm A for a decision problem which:

- If no-instance: returns "no".
- If yes-instance: returns "yes" with probability p.

Algorithm A is a one-sided Monte Carlo algorithm with false negatives.

Problem

Suppose A is a one-sided Monte Carlo algorithm with false negatives, that with probability p returns "yes" when the input is a yes-instance. How can we use A and design an a new algorithm which ensures a new success probability of a constant C ?

Let $t=-\frac{\ln (1-C)}{p}$ and repeat t times. Failure probability is

$$
(1-p)^{t} \leq\left(e^{-p}\right)^{t}=\frac{1}{e^{p t}}=1-C
$$

via the inequality $1-x \leq e^{-x}$.

Amplification

Theorem 2. If a one-sided error Monte Carlo Algorithm has success probability at least p, then repeating it independently $\left\lceil\frac{1}{p}\right\rceil$ times gives constant success probability. In particular if $p=\frac{1}{f(k)}$ for some computable function f, then we get an FPT one-sided error Monte Carlo Algorithm with additional $f(k)$ overhead in the running time bound.

2 Vertex Cover

For a graph $G=(V, E)$ a vertex cover $X \subseteq V$ is a set of vertices such that every edge is adjacent to a vertex in X.

```
Vertex Cover
    Input: Graph G, integer k
    Parameter: k
    Question: Does G have a vertex cover of size k
```

Theorem 3. There exists a randomized algorithm that, given a VERTEX Cover instance (G, k), in time $2^{k} n^{O(1)}$ either reports a failure or finds a vertex cover on k vertices in G. Moreover, if the algorithm is given a yes-instance, it returns a solution with constant probability.

Solution

Proof. - Pick an edge at random and then pick one of the endpoints of that edge with probability $\frac{1}{2}$.

- Repeating this k times finds a vertex cover with probability at least $\frac{1}{2^{k}}$.
- Applying Theorem 2 gives a randomized FPT running time of $2^{k} \cdot n^{O(1)}$.

3 Feedback Vertex Set

A feedback vertex set of a multigraph $G=(V, E)$ is a set of vertices $S \subset V$ such that $G-S$ is acyclic.

```
Feedback Vertex Set
    Input: Multigraph G, integer k
    Parameter: k
    Question: Does G have a feedback vertex of size k?
```

- Recall 5 simplification rules for Feedback Vertex Set.

Solution: Simplification

1. Loop: If loop at vertex v, remove v and decrease k by 1
2. Multiedge: Remove all edges of multiplicity greater than 2 , to exactly 2 .
3. Degree-1: If v has degree at most 1 then remove v.
4. Degree-2: If v has degree 2 with neighbors u, w then delete 2 edges $u v, v w$ and replace with new edge $u w$.

5 . Budget: If $k<0$, terminate algorithm and return no.
Refer to Lecture 6 for soundness of simplification rules.
Lemma 4. Let G be a multigraph on n vertices, with minimum degree at least 3. Then, for every feedback vertex set X of G, at least $1 / 3$ of the edges have at least one end point in X.

Proof. The graph G has minimum degree 3, this means it has at least $3 n / 2$ edges. Let $G \backslash X=F$ be the forest that remains. There at most $n-1$ edges in the forest F. This means that at least $\frac{1}{3}$ of the edges are in X.

Random Algorithm

Theorem 5. There is a randomized algorithm that, given a Feedback Vertex Set instance (G, k), in time $6^{k} n^{O(1)}$ either reports a failure or finds a feedback vertex set in G of at most k. Moreover, if the algorithm is given a yes-instance, it returns a solution with constant probability.

Solution

Proof. - First apply simplification rules 1-5 in order to obtain a multigraph G^{\prime} with minimum degree at least 3 and we wish to find feedback vertex set X^{\prime} of size k^{\prime}.

- Lemma 4 implies with probability greater than $\frac{1}{3}$, a randomly chosen edge e has at least one endpoint in X^{\prime}. So with probability greater than $\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$, a randomly chosen endpoint of e belongs to X^{\prime}.
- By inductive process, a recursive call finds a feedback vertex set in graph $G^{\prime}-\{v\}$ of size $k^{\prime}-1$ with probability $\left(\frac{1}{6}\right)^{k-1}$. Hence X^{\prime} can be found with probability at least $\left(\frac{1}{6}\right)^{k}$.
- Applying Theorem 2 gives a randomized FPT running time of $6^{k} \cdot n^{O(1)}$.

Lemma 6. Let G be a multigraph on n vertices, with minimum degree 3. For every feedback vertex set X, then at least $\frac{1}{2}$ of the edges of G have at least one endpoint in X.

Hint: Let $H=G-X$ be a forest. The statement is equivalent to:

$$
|E(G) \backslash E(H)|>|V(H)|>|E(H)|
$$

Let $J \subseteq E(G)$ denote edges with one endpoint in X, and the other in $V(H)$. Show:

$$
|J|>|V(H)|
$$

Solution

Proof. - Let $V_{\leq 1}, V_{2}, V_{\geq 3}$ be set of vertices that have degree at most 1, exactly 2, and at least 3 respectively in H.

- Since G has min degree 3 then each vertex in $V_{\leq 1}$ contributes at least 2 edges to J. Each vertex V_{2} contributes at least 1 edge to J.
- Note H is a forest, we inductively show $\left|V_{\geq 3}\right|<\left|V_{\leq 1}\right|$.
- Trivially true for empty forest and single vertex.
- Assume true for forests of size $n-1$, i.e. $\left|V_{\geq 3}^{\prime}\right|<\left|V_{\leq 1}^{\prime}\right|$
- For any forest of size n, consider removing a leaf (which must always exist). If $\left|V_{\geq 3}\right|=\left|V_{\geq 3}^{\prime}\right|+1$ then $\left|V_{\leq 1}\right|=\left|V_{\leq 1}^{\prime}\right|+1$.
- This results in:

$$
|E(G) \backslash E(H)| \geq|J| \geq 2\left|V_{\leq 1}\right|+\left|V_{2}\right|>\left|V_{\leq 1}\right|+\left|V_{2}\right|+\left|V_{\geq 3}\right|=|V(H)|
$$

Random Algorithm 2

Lemma 7. There exists a randomized algorithm that, given a Feedback Vertex Set instance (G, k), in time $4^{k} n^{O(1)}$ either reports a failure or finds a path on k vertices in G. Moreover, if the algorithm is given a yes-instance, it returns a solution with constant probability.

Corollary 8. Given a Feedback Vertex Set instance (G, k), in time $4^{k} n^{O(1)}$ there is an algorithm that either reports a failure or if given a yes-instance finds a feedback vertex set in G of size at most k with constant probability.

4 Color Coding

Longest Path

A simple path is a sequence of edges which connect a sequence of distinct vertices.

```
LONGEST PATH
    Input: Graph G, integer k
    Parameter: k
    Question: Does G have a simple path of size k?
```


Problem

- Show that Longest Path is NP-hard.

Reduction from Hamiltonian Path with $k=n-1$.

Color Coding

Lemma 9. Let U be a set of size n, and let $X \subseteq U$ be a subset of size k. Let $\chi: U \rightarrow[k]$ be a coloring of the elements of U, chosen uniformly at random. Then the probability that the elements of X are colored with pairwise distinct colors is at least e^{-k}.

Proof. There are k^{n} possible colorings χ and $k!k^{n-k}$ of them are injective on X. The lemma follows from the inequality

$$
k!>(k / e)^{k} .
$$

Colorful Path

A path is colorful if all vertices of the path are colored with pairwise distinct colors.
Lemma 10. Let G be an undirected graph, and let $\chi: V(G) \rightarrow[k]$ be a coloring of its vertices with k colors. There exists a determinisitic algorithm that checks in time $2^{k} n^{\mathcal{O}(1)}$ whether G contains a colorful path on k vertices and, if this is the case, returns one such path.

Solution

Proof. Parition $V(G)$ into V_{1}, \ldots, V_{k} subsets such that vertices in V_{i} are colored i.
Apply dynamic programming on nonempty $S \subseteq\{1, \ldots, k\}$. For $u \in \bigcup_{i \in S} V_{i}$ let $P(S, u)=$ true if there is a colorful path with colors from S and u as an endpoint. We have the following:

- For $|S|=1, P(S, u)=$ true for $u \in V(G)$ iff $S=\{\chi(u)\}$.
- For $|S|>1$

$$
P(S, u)= \begin{cases}\bigvee_{u v \in E(G)} P(S \backslash\{\chi(u)\}, v) & \text { if } \chi(u) \in S \\ \text { false } & \text { otherwise }\end{cases}
$$

All values of P can be computed in $2^{k} n^{O(1)}$ time and there exists a colorful k-path iff $P([k], v)$ is true for some vertex $v \in V(G)$.

Longest Path

Theorem 11. There exists a randomized algorithm that, given a LONGEST Path instance (G, k), in time ($2 e)^{k} n^{O(1)}$ either reports a failure or finds a path on k vertices in G. Moreover, if the algorithm is given a yes-instance, it returns a solution with constant probability.

5 Monotone Local Search

Exact Exponential Algorithms vs Parameterized Algorithms

Exact Exponential Algorithms
Parameterized Algorithms

- Find exact solutions with respect to parameter n, the input size.
- Feedback Vertex set $O\left(1.7347^{n}\right)$ [Fomin, Todinca and Villanger 2015]
- Running Time: $O\left(\alpha^{n} n^{O(1)}\right)$
- Include parameter k, commonly the solution size.
- Feedback Vertex Set: $O\left(3.592^{k}\right)$ [Kociumaka and Pilipczuk 2013]
- Running Time: $O\left(f(k) \cdot n^{O(1)}\right)$

Can we use Parameterized Algorithms to design fast Exact Exponential Algorithms?

Subset Problems

An implicit set system is a function Φ with:

- Input: instance $I \in\{0,1\}^{*},|I|=N$
- Output: set system $\left(U_{I}, \mathcal{F}_{I}\right)$:
- universe $U_{I},\left|U_{I}\right|=n$
- family \mathcal{F}_{I} of subsets of U_{I}

```
\Phi-SuBSET
    Input: Instance I
    Question: Is }|\mp@subsup{\mathcal{F}}{I}{}|>
```

```
\Phi-ExtENSION
    Input: Instance I, a set X\subseteq\mp@subsup{U}{I}{}}\mathrm{ , and an integer }
```


Algorithm

Suppose Φ-Extension has a $O^{*}\left(c^{k}\right)$ time algorithm B.
Algorithm for checking whether contains a set of size k

- Set $t=\max \left(0, \frac{c k-n}{c-1}\right)$
- Uniformly at random select a subset $X \subseteq U_{I}$ of size t
- Run $B(I, X, k-t)$

Running time: [Fomin, Gaspers, Lokshtanov \& Saurabh 2016]

$$
O^{*}\left(\frac{\binom{n}{t}}{\binom{k}{t}} \cdot c^{k-t}\right)=O^{*}\left(2-\frac{1}{c}\right)^{n}
$$

Intuition

Brute-force randomized algorithm

- Pick k elements of the universe one-by-one.
- Suppose \mathcal{F}_{I} contains a set of size k.

Success probability:

$$
\begin{gathered}
\frac{k}{n} \cdot \frac{k-1}{n-1} \cdot \ldots \cdot \frac{k-t}{n-t} \cdot \ldots \cdot \frac{2}{n-(k-2)} \frac{1}{n-(k-1)}=\frac{1}{\binom{n}{k}} \\
\frac{1}{c}
\end{gathered}
$$

Theorem 12. If there exists an algorithm for Φ-EXTENSION with running time $c^{k} n^{O(1)}$ then there exists a randomized algorithm for Φ-SUBSET with running time $\left(2-\frac{1}{c}\right)^{n} \cdot n^{O(1)}$

- Can be derandomized at the expense of a multiplicative $2^{o(1)}$ factor in the running time.

Theorem 13. For a graph G there exists a randomized algorithm which finds a smallest feedback vertex set in time $\left(2-\frac{1}{3.592}\right)^{n} \cdot n^{O(1)}=1.7217^{n} \cdot n^{O(1)}$.

References

- Chapter 5, Randomized methods in parameterized algorithms by Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Exact Algorithms via Monotone Local Search, Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, Saket Saurabh. ACM symposium on Theory of Computing, 2016.

Exercise 1

```
1-Regular Deletion
    Input: \(\quad\) Graph \(G=(V, E)\), integer \(k\)
    Parameter: \(k\)
    Question: \(\quad\) Does there exist \(X \subseteq V\) with \(|X| \leq k\) such that \(G-X\) is 1-regular?
```

- Design a randomized FPT algorithm with running time $O^{*}\left(4^{k}\right)$

Solution 1

- If there is a vertex with degree 0 , then remove it and reduce k by 1 .
- If v has degree 1 , remove all vertices at distance at most 2 from v, and reducing k by the number of vertices at distance 2 from v.
- Graph now has minimum degree 2. If yes-instance then deletion set X is incident to at least $\frac{|E|}{2}$ edges.
- Choose edge at random and then an endpoint of the chosen at at random for a $\frac{1}{4}$ probability of selecting a vertex in X.

Exercise 2

Triangle Packing	
Input:	Graph G, integer k
Parameter:	k
Question:	Does G have k-vertex disjoint triangles?

- Design a randomized FPT algorithm for Triangle Packing.

Solution 2

- By considering a random $3 k$ coloring χ of the vertices, Lemma 9 provides an algorithm to return a subset X of size $3 k$ are pairwise distinct with $e^{-3 k}$ success probability.
- For a graph G and coloring $\chi: V(G) \rightarrow[3 k]$, in a similar manner to Lemma 10 we design an algorithm that checks whether G contains a triangle packing on $3 k$ vertices such that all vertices are pairwise distinctly colored. We do the following:
- Enumerate though all possible ways of partitioning $3 k$ colors into k bags of exactly 3 colors each. There are exactly $\frac{3 k!}{(3!)^{k} k!}$ of these ways.
- For a bag, let these colors be i, j, k and consider the vertex partition V_{i}, V_{j}, V_{k}. Using these vertices we check if there exists a triangle using vertices from $V_{i} \cup V_{j} \cup V_{k}$ such that each vertex is a different color. This can be computed in time n^{3}. Repeating this for all k bags only requires $k \cdot n^{3}$ time.
- Running time of this algorithm is still FPT.

