3. Branching Algorithms # COMP6741: Parameterized and Exact Computation Serge Gaspers¹² ¹School of Computer Science and Engineering, UNSW Australia ²Data61, Decision Sciences Group, CSIRO Semester 2, 2016 #### Outline - Introduction - Maximum Independent Set - Simple Analysis - Search Trees and Branching Numbers - Measure Based Analysis - Optimizing the measure - Exponential Time Subroutines - Structures that arise rarely - State Based Measures - Max 2-CSP - Further Reading #### Outline - Introduction - 2 Maximum Independent Set - Simple Analysis - Search Trees and Branching Numbers - Measure Based Analysis - Optimizing the measure - Exponential Time Subroutines - Structures that arise rarely - State Based Measures - Max 2-CSF - Further Reading # Recall: Maximal Independent Sets - A vertex set $S \subseteq V$ of a graph G = (V, E) is an independent set in G if there is no edge $uv \in E$ with $u, v \in S$. - An independent set is maximal if it is not a subset of any other independent set. - Examples: # Enumeration problem: Enumerate all maximal independent sets #### ENUM-MIS Input: graph G Output: all maximal independent sets of G Maximal independent sets: $\{a, d\}, \{b\}, \{c\}$ Semester 2, 2016 # Enumeration problem: Enumerate all maximal independent sets #### ENUM-MIS Input: graph G Output: all maximal independent sets of G Maximal independent sets: $\{a, d\}, \{b\}, \{c\}$ **Note:** Let v be a vertex of a graph G. Every maximal independent set contains a vertex from $N_G[v]$. ``` Algorithm enum-mis(G,I) Input : A graph G=(V,E), an independent set I of G. Output: All maximal independent sets of G that are supersets of I. 1 G' \leftarrow G - N_G[I] 2 if V(G') = \emptyset then // G' has no vertex 3 \bigcup Output I 4 else 5 \bigcup Select v \in V(G') such that d_{G'}(v) = \delta(G') // v has min degree in G' Run enum-mis(G, I \cup \{u\}) for each u \in N_{G'}[v] ``` ### Running Time Analysis Let us upper bound by $L(n) = 2^{\alpha n}$ the number of leaves in any search tree of **enum-mis** for an instance with $|V(G')| \le n$. We minimize α (or 2^{α}) subject to constraints obtained from the branching: $$\begin{split} L(n) &\geq (d+1) \cdot L(n-(d+1)) & \text{for each integer } d \geq 0. \\ \Leftrightarrow & 2^{\alpha n} \geq d' \cdot 2^{\alpha \cdot (n-d')} & \text{for each integer } d' \geq 1. \\ \Leftrightarrow & 1 \geq d' \cdot 2^{\alpha \cdot (-d')} & \text{for each integer } d' \geq 1. \end{split}$$ For fixed d', the smallest value for 2^{α} satisfying the constraint is $d'^{1/d'}$. The function $f(x)=x^{1/x}$ has its maximum value for x=e and for integer x the maximum value of f(x) is when x=3. Therefore, the minimum value for 2^{α} for which all constraints hold is $3^{1/3}$. We can thus set $L(n) = 3^{n/3}$. ## Running Time Analysis II Since the height of the search trees is $\leq |V(G')|$, we obtain: #### Theorem 1 Algorithm enum-mis has running time $O^*(3^{n/3}) \subseteq O(1.4423^n)$, where n = |V|. #### Corollary 2 A graph on n vertices has $O(3^{n/3})$ maximal independent sets. ## Running Time Lower Bound #### Theorem 3 There is an infinite family of graphs with $\Omega(3^{n/3})$ maximal independent sets. ### Branching Algorithm #### Branching Algorithm - Selection: Select a local configuration of the problem instance - Recursion: Recursively solve subinstances - Combination: Compute an optimal solution of the instance based on the optimal solutions of the subinstances - Simplification rule: 1 recursive call - Branching rule: ≥ 2 recursive calls ### Outline - Introduction - Maximum Independent Set - Simple Analysis - Search Trees and Branching Numbers - Measure Based Analysis - Optimizing the measure - Exponential Time Subroutines - Structures that arise rarely - State Based Measures - Max 2-CSF - Further Reading #### MAXIMUM INDEPENDENT SET MAXIMUM INDEPENDENT SET Input: $\operatorname{\mathsf{graph}} G$ Output: A largest independent set of G. ``` Algorithm mis(G) Input : A graph G = (V, E). Output: The size of a maximum i.s. of G. 1 if \Delta(G) \leq 2 then // G has max degree \leq 2 return the size of a maximum i.s. of G in polynomial time 3 else if \exists v \in V : d(v) = 1 then //v has degree 1 4 return 1 + \min(G - N[v]) 5 else if G is not connected then 6 Let G_1 be a connected component of G 7 return mis(G_1) + mis(G - V(G_1)) 8 else 9 | Select v \in V s.t. d(v) = \Delta(G) // v has max degree o return \max(1 + \min(G - N[v]), \min(G - v)) ``` 13 / 55 #### Correctness Line 4: #### Lemma 4 If $v \in V$ has degree 1, then G has a maximum independent set I with $v \in I$. #### Proof. Let J be a maximum independent set of G. If $v \in J$ we are done because we can take I = J. If $v \notin J$, then $u \in J$, where u is the neighbor of v, otherwise J would not be maximum. Set $I=(J\setminus\{u\})\cup\{v\}$. We have that I is an independent set, and, since |I|=|J|, I is a maximum independent set containing v. S. Gaspers (UNSW) ### Outline - Introduction - Maximum Independent Set - Simple Analysis - Search Trees and Branching Numbers - Measure Based Analysis - Optimizing the measure - Exponential Time Subroutines - Structures that arise rarely - State Based Measures - Max 2-CSF - 4 Further Reading # Simple Analysis I #### Lemma 5 (Simple Analysis Lemma) Let - A be a branching algorithm - $\alpha > 0$, c > 0 be constants such that on input I, A calls itself recursively on instances I_1, \ldots, I_k , but, besides the recursive calls, uses time $O(|I|^c)$, such that $$(\forall i: 1 \le i \le k) \quad |I_i| \le |I| - 1, \text{ and}$$ (1) $$2^{\alpha \cdot |I_1|} + \dots + 2^{\alpha \cdot |I_k|} \le 2^{\alpha \cdot |I|}. \tag{2}$$ Then A solves any instance I in time $O(|I|^{c+1}) \cdot 2^{\alpha \cdot |I|}$. 16 / 55 # Simple Analysis II #### Proof. By induction on |I|. W.l.o.g., suppose the hypotheses' O statements hide a constant factor $d \geq 0$, and for the base case assume that the algorithm returns the solution to an empty instance in time $d \leq d \cdot |I|^{c+1} 2^{\alpha \cdot |I|}$. Suppose the lemma holds for all instances of size at most $|I|-1\geq 0$, then the running time of algorithm A on instance I is $$\begin{split} T_A(I) & \leq d \cdot |I|^c + \sum_{i=1}^k T_A(I_i) & \text{(by definition)} \\ & \leq d \cdot |I|^c + \sum_{i=1}^k d \cdot |I_i|^{c+1} 2^{\alpha \cdot |I_i|} & \text{(by the inductive hypothesis)} \\ & \leq d \cdot |I|^c + d \cdot (|I| - 1)^{c+1} \sum_{i=1}^k 2^{\alpha \cdot |I_i|} & \text{(by (1))} \\ & \leq d \cdot |I|^c + d \cdot (|I| - 1)^{c+1} 2^{\alpha \cdot |I|} & \text{(by (2))} \\ & \leq d \cdot |I|^{c+1} 2^{\alpha \cdot |I|}. \end{split}$$ The final inequality uses that $\alpha \cdot |I| > 0$ and holds for any $c \ge 0$. ## Simple Analysis for mis - At each node of the search tree: $O(n^2)$ - G disconnected: - (1) If $\alpha \cdot s < 1$, then $s < 1/\alpha$, and the algorithm solves G_1 in constant time (provided $\alpha > 0$, which we expect). We can view this rule as a simplification rule, getting rid of G_1 and making one recursive call on $G V(G_1)$. - (2) If $\alpha \cdot (n-s) < 1$: similar as (1). - (3) Otherwise, $$(\forall s: 1/\alpha \le s \le n - 1/\alpha) \quad 2^{\alpha \cdot s} + 2^{\alpha \cdot (n-s)} \le 2^{\alpha \cdot n}. \tag{3}$$ always satisfied since the function 2^x has slope ≥ 1 when $x \geq 1$. • Branch on vertex of degree $d \geq 3$ $$(\forall d: 3 \le d \le n-1) \quad 2^{\alpha \cdot (n-1)} + 2^{\alpha \cdot (n-1-d)} \le 2^{\alpha n}.$$ (4) Dividing all these terms by $2^{\alpha n}$, the constraints become $$2^{-\alpha} + 2^{\alpha \cdot (-1-d)} \le 1. \tag{5}$$ S. Gaspers (UNSW) ### Compute optimum a The minimum α satisfying the constraints is obtained by solving a convex mathematical program minimizing α subject to the constraints (the constraint for d=3 is sufficient as all other constraints are weaker). ### Compute optimum o The minimum α satisfying the constraints is obtained by solving a convex mathematical program minimizing α subject to the constraints (the constraint for d=3 is sufficient as all other constraints are weaker). Alternatively, set $x:=2^{\alpha}$, compute the unique positive real root of each of the characteristic polynomials $$c_d(x) := x^{-1} + x^{-1-d} - 1,$$ and take the maximum of these roots [Kullmann '99]. | d | x | α | |---|--------|----------| | 3 | 1.3803 | 0.4650 | | 4 | 1.3248 | 0.4057 | | 5 | 1.2852 | 0.3620 | | 6 | 1.2555 | 0.3282 | | 7 | 1.2321 | 0.3011 | ### Simple Analysis: Result - use the Simple Analysis Lemma with c=2 and $\alpha=0.464959$ - running time of Algorithm **mis** upper bounded by $O(n^3) \cdot 2^{0.464959 \cdot n} = O(2^{0.4650 \cdot n}) \text{ or } O(1.3803^n)$ #### Lower bound $$T(n) = T(n-5) + T(n-3)$$ - \bullet for this graph, P_n^2 , the worst case running time is $1.1938\dots^n\cdot\operatorname{poly}(n)$ - \bullet Run time of algo \mathbf{mis} is $\Omega(1.1938^n)$ ## Worst-case running time — a mystery #### Mystery What is the worst-case running time of Algorithm mis? - lower bound $\Omega(1.1938^n)$ - upper bound $O(1.3803^n)$ #### Outline - Introduction - 2 Maximum Independent Set - Simple Analysis - Search Trees and Branching Numbers - Measure Based Analysis - Optimizing the measure - Exponential Time Subroutines - Structures that arise rarely - State Based Measures - Max 2-CSF - 4 Further Reading ### Search Trees Denote $\mu(I) := \alpha \cdot |I|$. #### Search Trees Denote $\mu(I) := \alpha \cdot |I|$. Example: execution of **mis** on a P_n^2 ### Branching number: Definition Consider a constraint $$2^{\mu(I)-a_1} + \dots + 2^{\mu(I)-a_k} \le 2^{\mu(I)}$$. Its branching number is $$2^{-a_1} + \cdots + 2^{-a_k}$$, and is denoted by $$(a_1,\ldots,a_k)$$. Clearly, any constraint with branching number at most 1 is satisfied. ### Branching numbers: Properties Dominance For any a_i, b_i such that $a_i \geq b_i$ for all $i, 1 \leq i \leq k$, $$(a_1,\ldots,a_k)\leq (b_1,\ldots,b_k)\,,$$ as $2^{-a_1} + \dots + 2^{-a_k} \le 2^{-b_1} + \dots + 2^{-b_k}$. In particular, for any a, b > 0, $$\text{either} \qquad (a,a) \leq (a,b) \qquad \text{or} \qquad (b,b) \leq (a,b) \, .$$ Balance If $0 < a \le b$, then for any ε such that $0 \le \varepsilon \le a$, $$(a,b) \le (a-\varepsilon,b+\varepsilon)$$ by convexity of 2^x . #### Outline - Introduction - 2 Maximum Independent Set - Simple Analysis - Search Trees and Branching Numbers - Measure Based Analysis - Optimizing the measure - Exponential Time Subroutines - Structures that arise rarely - State Based Measures - Max 2-CSF - Further Reading ## Measure based analysis - Goal - capture more structural changes when branching into subinstances - How? - potential-function method, a.k.a., Measure & Conquer - Example: Algorithm mis - advantage when degrees of vertices decrease Instead of using the number of vertices, n, to track the progress of ${\bf mis}$, let us use a measure μ of G. #### Definition 6 A measure μ for a problem P is a function from the set of all instances for P to the set of non negative reals. Let us use the following measure for the analysis of **mis** on graphs of maximum degree at most 5: $$\mu(G) = \sum_{i=0}^{5} \omega_i n_i,$$ where $n_i := |\{v \in V : d(v) = i\}|.$ # Measure Based Analysis #### Lemma 7 (Measure Analysis Lemma) Let - A be a branching algorithm - $c \ge 0$ be a constant, and - ullet $\mu(\cdot),\eta(\cdot)$ be two measures for the instances of A, such that on input I, A calls itself recursively on instances I_1, \ldots, I_k , but, besides the recursive calls, uses time $O(\eta(I)^c)$, such that $$(\forall i) \quad \eta(I_i) \le \eta(I) - 1, \text{ and} \tag{6}$$ $$2^{\mu(I_1)} + \ldots + 2^{\mu(I_k)} \le 2^{\mu(I)}.$$ (7) Then A solves any instance I in time $O(\eta(I)^{c+1}) \cdot 2^{\mu(I)}$. ### Analysis of mis for degree at most 5 For $$\mu(G)=\sum_{i=0}^5\omega_in_i$$ to be a valid measure, we constrain that $$w_d\geq 0 \qquad \qquad \text{for each } d\in\{0,\dots,5\}$$ We also constrain that reducing the degree of a vertex does not increase the measure (useful for analysis of the degree-1 simplification rule and the branching rule): $$-\omega_d + \omega_{d-1} \le 0$$ for each $$d \in \{1, \dots, 5\}$$ ### Analysis of mis for degree at most 5 For $$\mu(G)=\sum_{i=0}^5\omega_in_i$$ to be a valid measure, we constrain that $$w_d\geq 0 \qquad \qquad \text{for each } d\in\{0,\dots,5\}$$ We also constrain that reducing the degree of a vertex does not increase the measure (useful for analysis of the degree-1 simplification rule and the branching rule): $$-\omega_d + \omega_{d-1} \le 0 \qquad \qquad \text{for each } d \in \{1, \dots, 5\}$$ Lines 1-2 is a halting rule and we merely need that it takes polynomial time so that we can apply Lemma 7. $$\begin{tabular}{ll} \begin{tabular}{ll} \be$$ 31 / 55 # Analysis of mis for degree at most 5 (II) Lines 3–4 of **mis** need to satisfy (7). The simplification rule removes v and its neighbor u. We get a constraint for each possible degree of u: $$2^{\mu(G)-\omega_1-\omega_d} \leq 2^{\mu(G)} \qquad \qquad \text{for each } d \in \{1,\dots,5\}$$ $$\Leftrightarrow \qquad \qquad 2^{-\omega_1-\omega_d} \leq 2^0 \qquad \qquad \text{for each } d \in \{1,\dots,5\}$$ $$\Leftrightarrow \qquad \qquad -\omega_1-\omega_d \leq 0 \qquad \qquad \text{for each } d \in \{1,\dots,5\}$$ These constraints are always satisfied since $\omega_d \geq 0$ for each $d \in \{0, \dots, 5\}$. **Note:** the degrees of u's other neighbors (if any) decrease, but this degree change does not increase the measure. 32 / 55 # Analysis of mis for degree at most 5 (III) For lines 5–7 of **mis** we consider two cases. #### **else if** *G* is not connected **then** Let G_1 be a connected component of G return $mis(G_1) + mis(G - V(G_1))$ If $\mu(G_1) < 1$ (or $\mu(G - V(G_1)) < 1$, which is handled similarly), then we view this rule as a simplification rule, which takes polynomial time to compute $\mathbf{mis}(G_1)$, and then makes a recursive call $\mathbf{mis}(G - V(G_1))$. To ensure that instances with measure < 1 can be solved in polynomial time, we constrain that $$w_d > 0$$ for each $d \in \{3, 4, 5\}$ and this will be implied by other constraints. Otherwise, $\mu(G_1) \geq 1$ and $\mu(G - V(G_1)) \geq 1$, and we need to satisfy (7). Since $\mu(G) = \mu(G_1) + \mu(G - V(G_1))$, the constraints $$2^{\mu(G_1)} + 2^{\mu(G-V(G_1))} < 2^{\mu(G)}$$ are always satisfied since the slope of the function 2^x is at least 1 when $x \ge 1$. (I.e., we get no new constraints on $\omega_1, \ldots, \omega_5$.) # Analysis of mis for degree at most 5 (IV) Lines 8–10 of **mis** need to satisfy (7). #### else ``` Select v \in V s.t. d(v) = \Delta(G) // v has max degree return \max (1 + \min(G - N[v]), \min(G - v)) ``` We know that in G-N[v], some vertex of $N^2[v]$ has its degree decreased (unless G has at most 6 vertices, which can be solved in constant time). Define $$(\forall d: 2 \le d \le 5)$$ $h_d := \min_{2 \le i \le d} \{w_i - w_{i-1}\}$ We obtain the following constraints: $$2^{\mu(G)-w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})} + 2^{\mu(G)-w_d - \sum_{i=2}^d p_i \cdot w_i - h_d} \le 2^{\mu(G)}$$ $$\Leftrightarrow \qquad 2^{-w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})} + 2^{-w_d - \sum_{i=2}^d p_i \cdot w_i - h_d} \le 1$$ for all $d, 3 \le d \le 5$ (degree of v), and all $p_i, 2 \le i \le d$, such that $\sum_{i=2}^d p_i = d$ (number of neighbors of degree i). 34 / 55 # Applying the lemma #### Our constraints $$\begin{aligned} w_d &\geq 0 \\ -\omega_d + \omega_{d-1} &\leq 0 \\ 2^{-w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})} + 2^{-w_d - \sum_{i=2}^d p_i \cdot w_i - h_d} &\leq 1 \end{aligned}$$ are satisfied by the following values: ## Applying the lemma #### Our constraints $$\begin{aligned} w_d &\geq 0 \\ -\omega_d + \omega_{d-1} &\leq 0 \\ 2^{-w_d - \sum_{i=2}^d p_i \cdot (w_i - w_{i-1})} + 2^{-w_d - \sum_{i=2}^d p_i \cdot w_i - h_d} &\leq 1 \end{aligned}$$ are satisfied by the following values: | i | w_i | h_i | |---|-------|-------| | 1 | 0 | 0 | | 2 | 0.25 | 0.25 | | 3 | 0.35 | 0.10 | | 4 | 0.38 | 0.03 | | 5 | 0.40 | 0.02 | These values for w_i satisfy all the constraints and $\mu(G) \leq 2n/5$ for any graph of max degree ≤ 5 . Taking c=2 and $\eta(G)=n$, the Measure Analysis Lemma shows that **mis** has run time $O(n^3)2^{2n/5}=O(1.3196^n)$ on graphs of max degree ≤ 5 . - Introduction - Maximum Independent Set - Simple Analysis - Search Trees and Branching Numbers - Measure Based Analysis - Optimizing the measure - Exponential Time Subroutines - Structures that arise rarely - State Based Measures - Max 2-CSF - 4 Further Reading ## Compute optimal weights • By convex programming [Gaspers, Sorkin 2009] All constraints are already convex, except conditions for h_d $$(\forall d: 2 \leq d \leq 5) \quad h_d := \min_{2 \leq i \leq d} \{w_i - w_{i-1}\}$$ $$\downarrow \downarrow$$ $$(\forall i, d: 2 \leq i \leq d \leq 5) \quad h_d \leq w_i - w_{i-1}.$$ Use existing convex programming solvers to find optimum weights. ``` param maxd integer = 5; set DEGREES := 0..maxd; var W {DEGREES} >= 0: # weight for vertices according to their degrees var g {DEGREES} >= 0; # weight for degree reductions from deg i var h {DEGREES} >= 0; # weight for degree reductions from deg <= i # maximum weight of W[d] var Wmax: minimize Obj: Wmax; # minimize the maximum weight subject to MaxWeight {d in DEGREES}: Wmax >= W[d]: subject to gNotation {d in DEGREES : 2 <= d}: g[d] \le W[d] - W[d-1]; subject to hNotation {d in DEGREES. i in DEGREES : 2 <= i <= d}: h[d] \le W[i] - W[i-1]; subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}: 2^{-}(-W[3] - p2*g[2] - p3*g[3]) + 2^{-}(-W[3] - p2*W[2] - p3*W[3] - h[3]) <=1; subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}: 2^{-(-W[4] - p2*g[2] - p3*g[3] - p4*g[4])} + 2^{-4} - p2*W[2] - p3*W[3] - p4*W[4] - h[4]) <=1; subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 : p2+p3+p4+p5=5}: 2^{-}(-W[5] - p2*g[2] - p3*g[3] - p4*g[4] - p5*g[5]) + 2^{-}(-W[5] - p2*W[2] - p3*W[3] - p4*W[4] - p5*W[5] - h[5]) <=1: ``` Semester 2 2016 ``` from numpy import * from FuncDesigner import oovar, oovars from openopt import NLP # install from openopt.org W = oovars(6)('W') g = [0] + [W[i] - W[i-1] for i in range (1.6)] h = oovars(6)('h') Wmax = oovar('Wmax') obj = Wmax startPoint = {W:[1 for i in range(6)], h:[0 \text{ for i in range}(6)], Wmax:1} g = NLP(obi, startPoint) for d in range(6): # positive vars q.constraints.append(W[d] >= 0) for d in range(6): # Max Weight q.constraints.append(Wmax >= W[d]) for d in range(2,6): # h notation for i in range(2,d+1): q.constraints.append(h[d] <= W[i]-W[i-1]) p = [0 \text{ for } x \text{ in range}(6)] for p[2] in range(4): # Deg 3 p[3] = 3-p[2] q.constraints.append(2**(-W[3]-sum([p[i]*g[i] for i in range(2,4)])) ``` ## Convex program in Python II ``` + 2**(-W[3]-sum([p[i]*W[i] for i in range(2,4)])-h[3]) <=1) for p[2] in range(5): # Deg 4 for p[3] in range(5-p[2]): p[4] = 4-sum(p[2:4]) q.constraints.append(2**(-W[4]-sum([p[i]*g[i] for i in range(2,5)])) + 2**(-W[4]-sum([p[i]*W[i] for i in range(2,5)])-h[4]) <=1) for p[2] in range(6): # Deg 5 for p[3] in range(6-p[2]): for p[4] in range(6-sum(p[2:4])): p[5] = 5-sum(p[2:5]) q.constraints.append(2**(-W[5]-sum([p[i]*g[i] for i in range(2,6)])) + 2**(-W[5]-sum([p[i]*W[i] for i in range(2,6)])-h[5]) <=1) q.ftol = 1e-10 a.xtol = 1e-10 r = q.solve('ralg') # use pyipopt for better performance Vmax opt = r(Vmax) print(r.xf) print("Running time: {0}^n".format(2**Wmax_opt)) ``` # Optimal weights | i | w_i | h_i | |---|----------|----------| | 1 | 0 | 0 | | 2 | 0.206018 | 0.206018 | | 3 | 0.324109 | 0.118091 | | 4 | 0.356007 | 0.031898 | | 5 | 0.358044 | 0.002037 | - use the Measure Analysis Lemma with $\mu(G)=\sum_{i=1}^5 w_i n_i \leq 0.358044 \cdot n$, c=2, and $\eta(G)=n$ - \bullet mis has running time $O(n^3)2^{0.358044 \cdot n} = O(1.2817^n)$ - Introduction - Maximum Independent Set - Simple Analysis - Search Trees and Branching Numbers - Measure Based Analysis - Optimizing the measure - Exponential Time Subroutines - Structures that arise rarely - State Based Measures - Max 2-CSF - Further Reading # Exponential time subroutines #### Lemma 8 (Combine Analysis Lemma) Let - A be a branching algorithm and B be an algorithm, - \bullet $c \ge 0$ be a constant, and - $\mu(\cdot), \mu'(\cdot), \eta(\cdot)$ be three measures for the instances of A and B, such that $\mu'(I) \leq \mu(I)$ for all instances I, and on input I, A either solves I by invoking B with running time $O(\eta(I)^{c+1}) \cdot 2^{\mu'(I)}$, or calls itself recursively on instances I_1, \ldots, I_k , but, besides the recursive calls, uses time $O(\eta(I)^c)$, such that $$(\forall i) \quad \eta(I_i) \le \eta(I) - 1, \text{ and}$$ (8) $$2^{\mu(I_1)} + \ldots + 2^{\mu(I_k)} \le 2^{\mu(I)}.$$ (9) Then A solves any instance I in time $O(\eta(I)^{c+1}) \cdot 2^{\mu(I)}$. # Algorithm **mis** on general graphs - use the Combine Analysis Lemma with A=B= mis, c=2, $\mu(G)=0.35805n$, $\mu'(G)=\sum_{i=1}^5 w_i n_i$, and $\eta(G)=n$ - for every instance G, $\mu'(G) \leq \mu(G)$ because $\forall i, w_i \leq 0.35805$ - for each $d \geq 6$, $$(0.35805,(d+1)\cdot 0.35805)\leq 1$$ ullet Thus, Algorithm **mis** has running time $O(1.2817^n)$ for graphs of arbitrary degrees - Introduction - 2 Maximum Independent Set - Simple Analysis - Search Trees and Branching Numbers - Measure Based Analysis - Optimizing the measure - Exponential Time Subroutines - Structures that arise rarely - State Based Measures - Max 2-CSF - Further Reading ## Rare Configurations - Branching on a local configuration C does not influence overall running time if C is selected only a constant number of times on the path from the root to a leaf of any search tree corresponding to the execution of the algorithm - Can be proved formally by using measure $$\mu'(I) := \begin{cases} \mu(I) + c & \text{if } C \text{ may be selected in the current subtree} \\ \mu(I) & \text{otherwise}. \end{cases}$$ # Avoid branching on regular instances in **mis** #### else Select $v \in V$ such that - (1) v has maximum degree, and - (2) among all vertices satisfying (1), v has a neighbor of minimum degree $$\mathbf{return} \, \max \left(1 + \mathbf{mis}(G - N[v]), \mathbf{mis}(G - v) \right)$$ New measure: $$\mu'(G) = \mu(G) + \sum_{d=3}^5 [G \text{ has a d-regular subgraph}] \cdot C_d$$ where $$C_d, 3 \leq d \leq 5$$, are constants. The Iverson bracket $[F] = \begin{cases} 1 \text{ if } F \text{ true} \\ 0 \text{ otherwise} \end{cases}$ ## Resulting Branching numbers For each $d, 3 \leq d \leq 5$ and all $p_i, 2 \leq i \leq d$ such that $\sum_{i=2}^d p_i = d$ and $p_d \neq d$, $$\left(w_d + \sum_{i=2}^d p_i \cdot (w_i - w_{i-1}), w_d + \sum_{i=2}^d p_i \cdot w_i + h_d\right).$$ All these branching numbers are at most 1 with the optimal set of weights on the next slide S. Gaspers (UNSW) | i | w_i | h_i | |---|----------|----------| | 1 | 0 | 0 | | 2 | 0.207137 | 0.207137 | | 3 | 0.322203 | 0.115066 | | 4 | 0.343587 | 0.021384 | | 5 | 0.347974 | 0.004387 | Thus, the modified Algorithm **mis** has running time $O(2^{0.3480\cdot n})=O(1.2728^n)$. Current best algorithm for MIS: $O(1.1996^n)$ [Xia, Nagamochi '13] S. Gaspers (UNSW) - Introduction - 2 Maximum Independent Set - Simple Analysis - Search Trees and Branching Numbers - Measure Based Analysis - Optimizing the measure - Exponential Time Subroutines - Structures that arise rarely - State Based Measures - Max 2-CSF - Further Reading #### State based measures - "bad" branching always followed by "good" branchings - amortize over branching numbers $$\mu'(I) := \mu(I) + \Psi(I),$$ where $\Psi: \mathcal{I} \to \mathbb{R}^+$ depends on global properties of the instance. - Introduction - 2 Maximum Independent Set - Simple Analysis - Search Trees and Branching Numbers - Measure Based Analysis - Optimizing the measure - Exponential Time Subroutines - Structures that arise rarely - State Based Measures - Max 2-CSP - Further Reading # Max 2-CSP generalizes Maximum Independent Set #### Max 2-CSP Input: A graph G = (V, E) and a set S of score functions containing - ullet a score function $s_e:\{0,1\}^2 o \mathbb{N}_0$ for each edge $e \in E$, - ullet a score function $s_v:\{0,1\} ightarrow \mathbb{N}_0$ for each vertex $v \in V$, and - a score "function" $s_\emptyset:\{0,1\}^0\to\mathbb{N}_0$ (which takes no arguments and is just a constant convenient for bookkeeping). Output: The maximum score $s(\phi)$ of an assignment $\phi: V \to \{0,1\}$: $$s(\phi) := s_{\emptyset} + \sum_{v \in V} s_v(\phi(v)) + \sum_{uv \in E} s_{uv}(\phi(u), \phi(v)).$$ - Introduction - 2 Maximum Independent Set - Simple Analysis - Search Trees and Branching Numbers - Measure Based Analysis - Optimizing the measure - Exponential Time Subroutines - Structures that arise rarely - State Based Measures - Max 2-CSF - Further Reading ## Further Reading - Chapter 2, Branching in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010. - Chapter 6, Measure & Conquer in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010. - Chapter 2, Branching Algorithms in Serge Gaspers. Exponential Time Algorithms: Structures, Measures, and Bounds. VDM Verlag Dr. Mueller, 2010.