
COMP3421

Computer Graphics
Introduction

Angela Finlayson

Email: angf@cse.unsw.edu.au

mailto:angf@cse.unsw.edu.au

Graphics Then and Now

1963

https://www.youtube.com/watch?v=USyoT_

Ha_bA

2014

https://www.youtube.com/watch?v=iQaU9U

P6dlg

https://www.youtube.com/watch?v=iQaU9UP6dlg
https://www.youtube.com/watch?v=iQaU9UP6dlg

Computer Graphics

Algorithms to automatically render

images from models.

model

Camera

Light

Objects

image

hi mum

Computer Graphics

Based on:

Geometry

Physics

Physiology/Neurology/Psychology

with a lot of simplifications and hacks to

make it tractable and look good.

Realistic rendering

Our main focus will be on realistic rendering

of 3D models. i.e. Simulating a

photographic image from a camera.

Note however: most art is not realistic but

involves some kind of abstraction.

Realism is easier because physics is more

predictable than psychology.

OpenGL

A 2D/3D graphics API.

Free, Open source

Cross platform (incl. web and mobile)

Highly optimised

Designed to use special purpose hardware

(GPU)

We will be using OpenGL

DirectX

Direct3D

Microsoft proprietary

Only on MS platforms or through emulation

(Wine, VMWare)

Roughly equivalent features + quality

Do it yourself

Generally a bad idea:

Reinventing the wheel

Numerical accuracy is hard

Efficiency is also hard

The fixed function

graphics pipeline

Projection

transformation
Illumination

Clipping
Perspective

division
ViewportRasterisation

Texturing
Frame

buffer
Display

Hidden

surface

removal

Model-View Transform

Model

Transform

View

Transform

Model

User

`

Fixed function pipeline

Projection

transformation
Illumination

Clipping
Perspective

division
ViewportRasterisation

Texturing
Frame

buffer
Display

Hidden

surface

removal

Model-View Transform

Model

Transform

View

Transform

Model

User

Vertex transformations

Fragment transformations

Programmable pipeline

Vertices

Connecti

vity

Vertex

transformation

Assembly,

Clipping
Rasterisation

Fragment

colouring
Depth bufferFrame bufferDisplay

pixel

positions
fragments

pixel

colours

screen

vertices

lines &

polys

visible

pixels

We do vertex transformations and Fragment colouring

ourselves by writing shaders in GLSL (There are also other

optional shaders)

Immediate Mode

Primitives are sent to

pipeline and displayed

right away

– More calls to openGL

commands

– No memory of

graphical entities

– Primitive data lost

after drawing

– Easy to get started with

but less efficient!

Application

Client side

glBegin

glEnd

GPU

Server side

Retained Mode
Store data in the

graphics card’s

memory instead of

retransmitting every

time

OpenGL can store

data in Vertex Buffer

Objects on GPU

We will look at this in

future weeks

Application

Client side

GPU

Server

side

VBO

Other topics

Global illumination techniques such as

Ray tracing

Radiosity

Curves and splines

Fractals

Colour theory

JOGL
OpenGL is a C/C++ library.

JOGL provides a set of Java bindings to the

native library.

http://jogamp.org/jogl/www/

http://jogamp.org/deployment/v2.2.4/archiv

e/

http://jogamp.org/deployment/v2.2.4/javado

c/jogl/javadoc/

http://jogamp.org/jogl/www/
http://jogamp.org/deployment/v2.2.4/archive/
http://jogamp.org/deployment/v2.2.4/javadoc/jogl/javadoc/

JOGL
JOGL is available on school machines in:

/home/cs3421/jogamp

Add the following JAR files to your

classpath:

/home/cs3421/jogamp/jar/jogl-

all.jar

/home/cs3421/jogamp/jar/gluegen-

rt.jar

Gluegen handles the binding to native libraries

automatically.

UI Toolkits

JOGL interfaces with a number of different

UI toolkits:

AWT, SWT, Swing

OpenGL also has its own UI tools:

GLUT, GLUI

We will be using Swing:

http://docs.oracle.com/javase/tutorial/uiswin

g/

http://docs.oracle.com/javase/tutorial/uiswing/

Initialisation

// Get default version of OpenGL This chooses

a profile best suited for your running

platform

GLProfile glProfile = GLProfile.getDefault();

// Get the default rendering capabilities

GLCapabilities glCapabilities = new

GLCapabilities(glProfile);

Create a GLJPanel
// A JPanel that is provides opengl

rendering support.

GLJPanel panel =

new GLJPanel(glCapabilities);

// Put it in a Swing window

final JFrame jframe = new JFrame("Title");

jframe.add(panel);

jframe.setSize(1024, 768);

jframe.setVisible(true);

Add event handlers

// Add a GL event listener

// to handle rendering events

// MyRenderer must implement GLEvenListener

panel.addGLEventListener(new MyRenderer());

// Quit if the window is closed

jframe.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);

Event-based

Programming
Both JOGL and Swing are event driven.

This requires a different approach to

programming:

The main body sets up the components

and registers event handlers, then quits.

Events are dispatched by the event loop.

Handlers are called when events occur.

GLEventListener
// initialise (usually only called once)

init(GLAutoDrawable drawable);

// release resources

dispose(GLAutoDrawable drawable);

// called after init and then in response to

//canvas resizing

reshape(GLAutoDrawable drawable, int x, int y,

int width, int height);

// render the scene, always called after a

reshape

display(GLAutoDrawable drawable);

GL2
All drawing is done using a GL2 object.

You can get one from the GLAutoDrawable :

GL2 gl = drawable.getGL().getGL2()

GL2 provides access to all the normal

OpenGL methods and constants.

http://jogamp.org/deployment/v2.2.4/javadoc/

jogl/javadoc/javax/media/opengl/GL2.html

http://jogamp.org/deployment/
http://jogamp.org/deployment/v2.2.4/archive/
http://jogamp.org/deployment//javadoc/jogl/javadoc/javax/media/opengl/GL2.html

GL2 Objects

Do not store GL2 objects as instance

variables.

They may be created and destroyed over

the lifetime of the program, so always get a

fresh one each time display,reshape etc is

called.

You can pass it to other functions that

display etc uses.

GL methods

Because of OpenGL's origins in C, the

methods have a distinctive naming

convention:

glVertex2f(...)

GL Library

Function # args

arg type

f = float

i = int

d = double

etc.

Drawing

Once we have set the state we can issue

drawing commands as:

gl.glBegin(GL_POINTS);// draw some points

gl.glVertex2d(0, 0);

gl.glVertex2d(0.5, 0.5);

gl.glVertex2d(-0.5, 0.5);

glEnd();

GL is stateful

The GL object maintains a large amount of

state:

the pen colour

the background colour

the point size, etc

Drawing operations require you to set the

state before issuing the drawing command.

Colors : RGBA
Colors are defined using Red (R), Green

(G), Blue (B) and Alpha (A) values.

For R,G,B values ranges from 0.0(none) to

1.0 (full intensity)

For A: values range from 0.0 (Transparent)

to 1.0(Opaque)

//Set pen color to brightest red

gl.glColor3f(1, 0, 0); //default alpha of 1

Color Buffer
Holds color information about the pixels.

Holds garbage when your program starts

and should be cleared.

The default settings clears it with black,

resulting in a black background. Or you can

set the color.

gl.glClearColor(1,1,1,1) ; //white

gl.glClear(GL.GL_COLOR_BUFFER_BIT);

More drawing

commands
Draw unconnected lines:

glBegin(GL.GL_LINES);

glVertex2d(-1, -1); // P0

glVertex2d(1, 1); // P1

glVertex2d(1, -1); // P2

glVertex2d(-1, 1); // P3

glEnd();

P0

P1P3

P2

More drawing

commands
Draw connected lines:

glBegin(GL.GL_LINE_STRIP);

glVertex2d(-1, -1); // P0

glVertex2d(1, 1); // P1

glVertex2d(1, -1); // P2

glVertex2d(-1, 1); // P3

glEnd();

P0

P1P3

P2

More drawing

commands
Draw closed polygons (deprecated):

glBegin(GL.GL_POLYGON);

glVertex2d(-1, -1); // P0

glVertex2d(1, 1); // P1

glVertex2d(1, -1); // P2

glVertex2d(-1, 1); // P3

glEnd();

//Note: this particular polygon is convex and

may not be rendered properly

P0

P1P3

P2

Polygons

OpenGL does not always draw polygons

properly.

OpenGL only guarantees to draw simple,

convex polygons correctly.

Concave and non-simple polygons need to

be tessellated into convex parts.

Polygons

Simple, Convex

Simple,

Concave

Not simple

hole

concavity

Polygons

Simple, Convex

Simple,

Concave

Not simple

possible

convex

tessellations

More drawing

commands
Draw separate triangles:

glBegin(GL.GL_TRIANGLES);

glVertex2d(etc); // P0

glVertex2d(); // P1

glVertex2d(); // P2

glVertex2d(); // P3

glVertex2d(); // P4

glVertex2d(); // P5

glEnd();

P0

P1
P2

P3

P5

P4

More drawing

commands
Draw strips of triangles:

glBegin(GL.GL_TRIANGLE_STRIP);

glVertex2d(etc); // P0

glVertex2d(); // P1

glVertex2d(); // P2

glVertex2d(); // P3

glVertex2d(); // P4

glVertex2d(); // P5

glEnd();

P0

P1
P2

P3

P4

P5

More drawing

commands
Draw fans of triangles:

glBegin(GL.GL_TRIANGLE_FAN);

glVertex2d(); // P0

glVertex2d(); // P1

glVertex2d(); // P2

glVertex2d(); // P3

glVertex2d(); // P4

glEnd();

P0

P1
P2 P3

P4

More drawing

commands
Similarly for quadrilaterals (deprecated):

glBegin(GL.GL_QUADS);

// draw unconnected quads

glEnd();

glBegin(GL.GL_QUAD_STRIP);

// draw a connected strip of quads

glEnd();

Winding Order
By default, triangles/quads/polygons etc are

defined with counter-clockwise vertices are

processed as front-facing triangles.

Clockwise are processed as back-facing

triangles.

Fill or outline

// fill the polygon with colour

gl.glColor4d(r, g, b, a);

//This is the default anyway

gl.glPolygonMode(

GL2.GL_FRONT_AND_BACK, GL2.GL_FILL);

gl.glBegin(GL2.GL_POLYGON);

// ...points...

gl.glEnd();

Fill or outline
// outline the polygon with colour

gl.glColor4d(r, g, b, a);

gl.glPolygonMode(

GL2.GL_FRONT_AND_BACK, GL2.GL_LINE);

gl.glBegin(GL2.GL_POLYGON);

// ...points...

gl.glEnd();

//Set back to FILL when you are finished – not

needed but is a bug fix for some implementations

on some platforms

gl.glPolygonMode(

GL2.GL_FRONT_AND_BACK, GL2.GL_FILL);

Begin and End

Not all commands can be used between

Begin and End.

glVertex, glColor can be.

glPointSize, glLineWidth can’t

For complete list see:

https://www.opengl.org/sdk/docs/man2/xht

ml/glBegin.xml

Animation

To handle animation we can separate the

display() function into two methods:

public void display(GLAutoDrawable drawable) {

// Update the model

updateModel();

// Render the new scene

render(drawable);

}

Animation

Display events are only fired when the image

needs to be redrawn.

We can use an FPSAnimator to fire events at a

particular rate:

// in main()

// create display events at 60fps

FPSAnimator animator = new FPSAnimator(60);

animator.add(panel);

animator.start();

Double Buffering
Single Buffering:

One buffer being both drawn to and sent to

the monitor. Updated objects would often

flicker.

Double Buffering: (default in jogl)

Uses two buffers, draw into back buffer while

the front buffer is displayed and then swap

buffers after updating finished. Smoother

animation.

Input events

We can add keyboard or mouse event

listeners to handle input.

http://docs.oracle.com/javase/7/docs/api/jav

a/awt/event/KeyListener.html

http://docs.oracle.com/javase/7/docs/api/jav

a/awt/event/MouseListener.html

http://docs.oracle.com/javase/6/docs/api/java/awt/event/MouseAdapter.html

Event handling

GL commands should generally only be

used within the GLEventListener events

• don’t try to store GL objects and use

GL commands in keylistener or mouse

events etc.

In multi-threaded code it is easy to create a

mess if you write the same variables in

different threads.

World vs Viewport

Notice that the coordinate system is

independent of the window size.

OpenGL maintains separate coordinate

systems for the world and the viewport.

This allows us to make our model

independent of the particular window size

or resolution of the display.

Viewport
We talk in general about the viewport as

the piece of the screen we are drawing on.

We can think of it as a 2d array of pixels.

It may be a window, part of a window, or the

whole screen. (In jogl by default it is the

whole window – minus the border)

It can be any size but we assume it is

always a rectangle.

World window

The world window is the portion of the

world that we can see.

It is always an axis-aligned rectangle.

By default the bottom-left corner is (-1,-1)

and the top-right corner is (1,1).

We can change this using by setting the

Projection matrix using glu.Ortho2d (and

other ways too we will see later)

Resizing the World

Window
public void reshape(GLAutoDrawable d,

int x, int y, int w, int h) {

GL2 gl = drawable.getGL().getGL2();

gl.glMatrixMode(GL2.GL_PROJECTION);

gl.glLoadIdentity();

glu.gluOrtho2d(

-10, 10, // left, right

-10.0, 10.0); // top, bottom

}

Aspect ratio
The aspect ratio of a rectangle is:

aspect = width / height

The default world window has aspect 1.0

(i.e. it is a square) – or it can be changed

by the programmer to be a rectangle.

The aspect ratio of the viewport depends

on the window shape – which the user can

change.

Mapping Windows
Opengl maps the world window to the viewport

automatically by stretching the world to fit into

the viewport.

If the aspect ratios of the 2 rectangles are not the

same, distortion will result.

sx

sy

x

y

Screen window
window

W.l W.r

W.t

W.b

viewport

V.r

V.b

V.l

V.t

Maintaining Aspect

Ratio
We can resize the world window to match

its aspect ratio to viewport.

The reshape() method is called whenever

the window/panel changes size.

If the viewport’s width is greater than its

height, show more of the world model in the

x-direction and vice versa.

gluOrtho2D

public void reshape(GLAutoDrawable d,

int x, int y, int w, int h) {

GL2 gl = drawable.getGL().getGL2();

GLU glu = new GLU();

double aspect = (1.0 * w) / h;

//Tell gl what matrix to use and

//initialise it to 1

gl.glMatrixMode(GL2.GL_PROJECTION);

gl.glLoadIdentity();

gluOrtho2D…
double size = 1.0;

if(aspect >=1){

// left, right, top, bottom

glu.gluOrtho2d(-size * aspect,

size * aspect,

-size, size);

} else {

glu.gluOrtho2d(-size, size,

-size/aspect,

size/aspect);

}

GLU

The GLU class contains a bunch of utility

methods. We will introduce some useful

methods as they arise.

To create an orthographic projection with

the specified boundaries in 2D (in world

coordinates):

glu.gluOrtho2d(left, right, top, bottom);

Debugging
Can use DebugGL2 or TraceGL2 or both.

In init:

drawable.setGL(new DebugGL2(

new TraceGL2(

drawable.getGL().getGL2(),

System.err)));

Mouse Events

When we click on the screen we get the

mouse co-ordinates in screen co-ordinates.

We need to somehow map them back to

world co-ordinates.

We have provided a utility class to help do

this as it is little messy/tricky at this point.

