
COMP3421
Week 2 - Transformations in 2D and Vector

Geometry Revision

Exercise
1. Write code to draw (an approximation)

of the surface of a circle at centre 0,0

with radius 1 using triangle fans.

Transformation

Matrices
GL defines a number of different matrices

for transformations.

The two we will encounter are the model-

view matrix and the projection matrix.

So far we have set the projection matrix,

which tells GL what kind of camera we are

using. We have used an orthographic

camera (more on this later).

glMatrixMode
You need to tell GL which matrix you are

currently modifying:

// select projection matrix

gl.glMatrixMode(GL2.GL_PROJECTION);

// perform operations ...

// select model-view matrix

gl.glMatrixMode(GL2.GL_MODELVIEW);

// perform operations ...

Always make sure you have the correct

matrix.

Initialising Matrices
Always make sure you initialise your matrix when

you use it for the first time.

We do this by setting it to the identity matrix (This is

like setting a variable you are going to use for

multiplication to 1)

//Specify which matrix you are using

gl.glMatrixMode(…);

//set it to the identity matrix

gl.glLoadIdentity();

Model-view

transformation
The model-view transformation describes

how the current local coordinate system

maps to the global coordinate system.

It is useful to think of it as two

transformations combined:

model transformation - local to world

view transformation - world to camera/eye

We will look at them separately.

In OpenGL

To work with the model-view transform, first

we select it:

gl.glMatrixMode(GL2.GL_MODELVIEW);

The first thing we do is initialise it to the

identity (i.e. no transformation).

gl.glLoadIdentity();

Example

Drawing a house:

gl.glMatrixMode(GL2.GL_MODELVIEW);

gl.glLoadIdentity();

drawHouse();

Transformations

We can then apply different transformations

to the coordinate system:

gl.glTranslated(dx, dy, dz);

gl.glRotated(angle, x, y, z);

gl.glScaled(sx, sy, sz);

Subsequent drawing commands will be in

the transformed coordinate system.

glTranslated

Translate the coordinate space by the

specified amount along each axis.

gl.glMatrixMode(GL2.GL_MODELVIEW);

gl.glLoadIdentity();

gl.glTranslated(1, -1, 0);

drawHouse();

In this case the origin of the

co-ordinate frame moves.

glRotated

Rotate the coordinate space by the

specified angle and axis.

gl.glMatrixMode(GL2.GL_MODELVIEW);

gl.glLoadIdentity();

// rotate 45°

// about the z-axis

gl.glRotated(45, 0, 0, 1);

drawHouse();

Notice, the origin of the co-ordinate frame

doesn't move

glRotated

Angles are in degrees.

Positive rotations are rotating x towards y.

Negative rotations are rotating y towards x.

gl.glMatrixMode(

GL2.GL_MODELVIEW);

gl.glLoadIdentity();

// rotate -45°

// about the z-axis

gl.glRotated(-45, 0, 0, 1);

drawHouse();

glScaled

Scale the coordinate space by the specified
amounts in the x, y and z (in 3d) directions.

gl.glMatrixMode(GL2.GL_MODELVIEW);

gl.glLoadIdentity();

gl.glScaled(2, 0.5, 1);

drawHouse();

Notice again, the origin of the co-ordinate

doesn't move.

glScaled

Negative scales create reflections.

gl.glMatrixMode(GL2.GL_MODELVIEW);

gl.glLoadIdentity();

// flip horizontally

gl.glScaled(-1, 1, 1);

drawHouse();

glScaled

Negative scales create reflections.

gl.glMatrixMode(GL2.GL_MODELVIEW);

gl.glLoadIdentity();

// flip vertically

gl.glScaled(1, -1, 1);

drawHouse();

glRotated
If the object is not located at the origin, it

might not do what you expect when its co-

ordinate frame is rotated.

The origin of the co-ordinate frame is the

pivot point.

glScaled
If the object is not located at the origin, the

object will move further from the origin if its

co-ordinated frame is scaled

Only points at the origin remain unchanged.

Object vs Coordinate

Transformations
We can think of transformations in two

ways

1. An object being transformed or altered

within a fixed co-ordinate system.

2. The co-ordinate system of the object

being transformed. This is generally the

way we will think of it.

Combining

transforms
A sequence of transforms take place in

successive coordinate systems:

gl.glLoadIdentity();

Combining

transforms
A sequence of transforms take place in

successive coordinate systems:

gl.glLoadIdentity();

gl.glTranslated(2, 1, 0);

Combining

transforms
A sequence of transforms take place in

successive coordinate systems:

gl.glLoadIdentity();

gl.glTranslated(2, 1, 0);

gl.glRotated(-45, 0, 0, 1);

Combining

transforms
A sequence of transforms take place in

successive coordinate systems:

gl.glLoadIdentity();

gl.glTranslated(2, 1, 0);

gl.glRotated(-45, 0, 0, 1);

gl.glScaled(2, 1, 1);

Combining

transforms
A sequence of transforms take place in

successive coordinate systems:

gl.glLoadIdentity();

gl.glTranslated(2, 1, 0);

gl.glRotated(-45, 0, 0, 1);

gl.glScaled(2, 1, 1):

gl.glTranslated(-0.5, 0, 0)

Order matters

Note that the order of transformations

matters.

translate then rotate != rotate then translate

translate then scale != scale then rotate

rotate then scale != scale then rotate

Instance

Transformation
Usually we want: translate(T), rotate(R),

scale(S) : M = TRS

We can specify objects once in a

convenient local co-ordinate system

We can have multiple occurrences in the

scene at the desired size orientation and

location by applying the desired instance

transformation

Non-uniform Scaling

then Rotating
If we scale by different amounts in the x

direction to the y direction and then rotate,

we get unexpected and often unwanted

results. Angles are not preserved.

Rotating about an

arbitrary point.
So far all rotations have been about the origin.

To rotate about an arbitrary point.

1. Translate to the point

gl.gltranslated(0.5,0.5,0);

2. Rotate

gl.glrotated(45,0,0,1);

3. Translate back again

gl.gltranslated(-0.5,-0.5,0);

Current

Transformation (CT)
Calls to glTranslate, glRotate and glScale

modify (post multiply – more on this later)

the current transformation/co-ordinate

frame.

Every time glVertex2d() is called, the

fixed function pipeline transforms the

given point by the CT.

Push and pop

Often we want to store the current

transformation/coordinate frame, transform

it and then restore the old frame again.

GL provides a stack of matrices for this

purpose. Push and pop using:

// store the current matrix

gl.glPushMatrix();

// restore the last pushed matrix

gl.glPopMatrix();

Scene Graphs

Consider drawing and animating a figure

such as this person:

We could calculate all the

vertices based on the angles

angle lengths, but this would

be long and error-prone.

Scene graph

To represent a complex scene we use a

scene graph. This tree describes how

different objects in the scene are connected

together: Torso

LU Arm Head

LL Arm

L Hand L Foot R Foot R Hand

LU Leg

LL Leg

RU Leg

RL Leg

RU Arm

RL Arm

Coordinate system

We draw each part in its own local

coordinate system:

// draw a foot

gl.glBegin(GL2.GL_POLYGON);

gl.glVertex2d(0, 0);

gl.glVertex2d(0, -1);

gl.glVertex2d(2, -1);

gl.glEnd();

(0, 0)

(0, -1) (2, -1)

x

y

Coordinate system

Then we transform the coordinate system:

translating

rotating

scaling

To get it into the position we want.

But from the object's point of view, nothing

has changed.

(0, 0) (0, -1)

(2, -1)

Scene graph

Each part draws itself in its own local

coordinate frame and then transforms the

coordinate frame to draw its subparts

appropriately.

When a node in the graph is moved, all its

children move with it.

Scene graph

pseudocode
drawTree() {

push model-view matrix

translate to new origin

rotate

scale

draw this object

for all children:

child.drawTree()

pop matrix

}

Camera

So far we have assumed world coordinate

(0, 0) is the centre of the world window.

It is useful to imagine the camera as an

object itself, with its own position, rotation

and scale.

View transform
The world is rendered as it appears in the

camera's local coordinate frame.

The view transform converts the world

coordinate frame into the camera's local

coordinate frame.

Note that this is the inverse of the

transformation that would convert the

camera’s local coordinate frame into world

coordinates.

View transform
Consider the world as if it was centered on

the camera. The camera stays still and the

world moves.

Moving the camera left

= moving the world right

Rotating the camera clockwise

= rotating the world anticlockwise

Growing the camera's view

= shrinking the world

View transform

Mathematically if:

Then the view transform is:

Implementing a

camera
To implement a camera, we need to apply

the view transform before the model

transform:

gl.glMatrixMode(GL2.GL_MODELVIEW);

gl.glLoadIdentity();

// apply the view transform

gl.glScaled(1.0 / cameraScale, ...);

gl.glRotated(-cameraAngle, 0, 0, 1);

gl.glTranslated(-camX, -camY, 0);

// apply the model transform + draw...

In the scene graph

We can add the camera as an object in our

scene graph:

Camera

Torso

LU Arm Head

LL Arm

L Hand L Foot R Foot R Hand

LU Leg

LL Leg

RU Leg

RL Leg

RU Arm

RL Arm

In the scene graph

We need to compute the camera's position

in world coordinates in order to compute

the view transform.

We can do this by working recursively up

the scene graph.

We will cover the maths necessarily to do

this calculation in the rest of this and the

following lecture.

Coordinate frames

We need a way to represent coordinate

frames so we can easily convert points in

one frame to another.

We will do this using vectors and matrices.

Some revision first.

Vectors

Having the right vector tools greatly

simplifies geometric reasoning.

A vector is a displacement.

A

B

v

Vectors

Having the right vector tools greatly

simplifies geometric reasoning.

A vector is a displacement.

We represent it as a

tuple of values in a particular coordinate

system.

A

B

v(1,1) (3,1)

(4,2)

Points vs Vectors

Vectors have

• length and direction

• no position

Points have

• position

• no length, no direction

Points and Vectors

The sum of a point and a vector is a point.

P + v = Q

Which is the same as saying

The difference between two points is a

vector:

v = Q – P

Adding vectors

By adding components:

Subtracting vectors

By subtracting components:

Linear combinations

Any equation of the form:

Affine combinations

A linear combination where:

Convex combinations

An affine combination where:

Magnitude

Magnitude (i.e. length)

Normalisation:

Dot product

Definition:

Properties:

Angle between

vectors

Normals in 2D
If two vectors are perpendicular, their dot

product is 0.

If n = (nx, ny) is a normal to

p = (x, y)

p · n = xn x + yn y = 0

So either unless one is the 0 vector

n = (y, −x) or n = (−y, x)

Cross product

Only defined for 3D vectors:

Properties:

a
b

a × b

axb vs bxa

Assume we have a right-handed co-

ordinate system.

Curl the fingers of your right hand from a to

b. axb will point in the direction of your

thumb.

If you curl the fingers of your right hand

from b to a you will get bxa which should

point in the opposite direction to axb.

Memory Aid

a x b = | i j k |

| a1 a2 a3 |

| b1 b2 b3 |

= a2b3 – a3b2 + a3b1 – a1 b3 + a1b2-a2b1

Cross product

The magnitude of the cross product is the

area of the parallelogram formed by the

vectors:

a

b

|a × b|

Area of a polygon

P0 P1

P2

P3
P4

P5

The front of a polygon is

the direction the area vector

faces.

Area of a polygon

P0 P1

P2

P3

P4P5

Area of a polygon

P0 P1

P2

P3

P4P5

Negative area

1. What is the vector v from P to Q if

P = (4,0), Q = (1,3) ?

2. Normalise the vector (8,6)

3. Find the angle between vectors (1,1)

and (-1,-1)

4. Is vector (3,4) perpendicular to (2,1)?

5. Find a vector perpendicular to vectors a

and b where a = (3,0,2) b = (4,1,8)

Exercises

Matrix Mult

[1 0 3] [2 1 1]

[2 3 4] [0 0 1]

[0 0 1] [1 1 2]

Matrix Mult

[1 0 3] [2 1 1] = [2 + 0 + 3

[2 3 4] [0 0 1] [

[0 0 1] [1 1 2] [

Matrix Mult

[1 0 3] [2 1 1] = [5

[2 3 4] [0 0 1] [

[0 0 1] [1 1 2] [

Matrix Mult

[1 0 3] [2 1 1] = [5 1+ 0 + 3

[2 3 4] [0 0 1] [

[0 0 1] [1 1 2] [

Matrix Mult

[1 0 3] [2 1 1] = [5 4

[2 3 1] [0 0 1] [

[0 0 1] [1 1 2] [

Matrix Mult

[1 0 3] [2 1 1] = [5 4 1 + 0 + 6]

[2 3 4] [0 0 1] [

[0 0 1] [1 1 2] [

Matrix Mult

[1 0 3] [2 1 1] = [5 4 7]

[2 3 4] [0 0 1] [

[0 0 1] [1 1 2] [

Matrix Mult

[1 0 3] [2 1 1] = [5 4 7]

[2 3 4] [0 0 1] [4 + 0 + 4

[0 0 1] [1 1 2] [

Matrix Mult

[1 0 3] [2 1 1] = [5 4 7]

[2 3 4] [0 0 1] [8

[0 0 1] [1 1 2] [

Matrix Mult

[1 0 3] [2 1 1] = [5 4 7]

[2 3 4] [0 0 1] [8 2 + 0 + 4

[0 0 1] [1 1 2] [

Matrix Mult

[1 0 3] [2 1 1] = [5 4 7]

[2 3 4] [0 0 1] [8 6

[0 0 1] [1 1 2] [

Etc…

Matrix Mult

[1 0 3] [2 1 1] = [5 4 7]

[2 3 4] [0 0 1] [8 6 13]

[0 0 1] [1 1 2] [1 1 2]

