
COMP3421
Hidden surface removal

Illumination

The fixed function

graphics pipeline

Projection

transformation
Illumination

Clipping
Perspective

division
ViewportRasterisation

Texturing
Frame

buffer
Display

Hidden

surface

removal

Model-View Transform

Model

Transform

View

Transform

Model

User

Fragments

Rasterisation converts polygons into collections

of fragments. A fragment is a single image pixel

with extra information attached.

struct frag {

float[3] pos; // pixel coords and

// depth info

float[4] color; // rgba colour

// other info...

}

Back face culling
An optimisation called face culling allows non-

visible triangles of closed surfaces (back faces)

to be culled in the rasteriser.

This avoids unnecessary fragments from being

created.

Calculate the signed area in window

coordinates. If it is negative, ignore the polygon.

This is based on the winding order of the

polygon – front faces are CCW by default.

Back face culling

// Disabled by default

// To turn on culling:

gl.glEnable(GL2.GL_CULL_FACE);

gl.glCullFace(GL2.GL_BACK);

Hidden surface

removal
We now have a list of fragments expressed in

screen coordinates and pseudodepth.

For any particular pixel on the screen, we

need to know what we can see at that pixel.

Some fragments may be behind other

fragments and should not

be seen

Hidden Surface

Removal
We will look at 2 approaches to this problem.

• Make sure all polygons (and therefore

fragments) are drawn in the correct order

in terms of depth using BSP trees. This is

done at the model level. This is not built

into OpenGL.

• Use the depth buffer. This is done at the

fragment level and is built into OpenGL.

Painter’s algorithm

The naive approach to hidden surface

removal:

• Sort polygons by depth

• Draw in order from back to front

This is known as the Painter's algorithm

Problem

Which polygon to paint first?

We need to split them

into pieces.

BSP Trees
Binary Space Partitioning trees

Not implemented in OpenGL

Each polygon splits the world half

• things behind of the polygon

• things in front of the polygon

We can divide all the other polygons into

two sets.

BSP Trees

1

2
3

4

5

6

BSP Trees

Front

polygons

Back

polygons

1

2,3 4,5,6

1

2
3

4

5

6

front back

BSP Trees

1

2

3

1

2
3

4

5

6

4,5,6

front back

back

BSP Trees

1

2

3

1

2
3

4

5

6

4,5,6

front back

back

BSP Trees

1

2

3

4

5 6

1

2
3

4

5

6

front back

back front back

BSP Trees

1

2

3

4

5 6

1

2
3

4

5

6

front back

back backfront

To traverse

If camera is in front of the polygon:

draw what is behind the polygon

draw the polygon

draw what is in front of the polygon

If camera is behind the polygon:

draw what is in front of the polygon

draw the polygon

draw what is behind the polygon

BSP Trees

1

2

3

4

5 6

1

2
3

4

5

6

front back

back backfront

Example Traversal
The algorithm is first applied to the root node of

the tree, node 1. Camera is in front of node 1, so

we recursively traverse the BSP sub-tree

containing polygons behind 1.

• This tree has root node 4. Camera is

behind 4 so we traverse the BSP sub-

tree containing polygons in front of 4:

• 5 is a leaf node so we draw it

• Then we draw 4

Example Traversal
• We then traverse the BSP sub-tree

containing polygons behind 4, this is just 6

so we draw 6.

We then draw 1 and apply traversal to all nodes in

front of node 1

• Camera is in front of 2 so the nodes

behind 2 are traversed. This is just node 3

which is drawn

• Finally node 2 is drawn

Example Traversal

So the order that we draw the polygons for

the given camera position is

• 5 4 6 1 3 2

Splitting Polygons
Back

polygons

1

2

3

4

Splitting Polygons
Back

polygons

1

2,3

a

1

2 3a

front back

4

4,3

b

3b

Good/bad trees

The order of polygons chosen for spliiting

can greatly affect the size of the tree.

Bad choices lead to many splits = big tree.

Optimal tree is hard to find.

Randomly try 5 or 6 times and keep the

best.

Pros + Cons

Good: If the camera/viewpoint moves the

tree does not need to be recalculated.

Good: Testing is fast once the tree is built

Bad: Building the tree is slow.

Bad: If the geometry changes, the tree

must be rebuilt.

Useful for rendering static geometry (eg

walls).

Depth buffer

Another approach to hidden surface

removal is to keep per-pixel depth

information.

This is what OpenGL uses.

This is stored in a block of memory called

the depth buffer (or z-buffer).

d[x][y] = pseudo-depth of pixel (x,y)

OpenGL

// in init()

gl.glEnable(GL2.GL_DEPTH_TEST);

// in display()

gl.glClear(

GL.GL_COLOR_BUFFER_BIT |

GL.GL_DEPTH_BUFFER_BIT);

Depth buffer

Initially the depth buffer is initialised to the

far plane depth.

We draw each polygon pixel by pixel.

For each pixel we calculate its pseudodepth

and compare it to the value in the buffer.

If it is closer, we draw the pixel and update

the buffer value to the new pseudodepth.

Pseudocode
Initialise db[x][y] = max for

all x,y

For each polygon:

For each pixel (px,py):

d = pseudodepth of (px,py)

if (d < db[px][py]):

draw pixel

db[x][y] = d

Example

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

.1

.1 .1

.2 .2 .2

.2 .2 .2 .2

.3 .3 .3 .3 .3

.3 .3 .3 .3 .3 .3

.4 .4 .4 .4 .4 .4 .4

.4 .4 .4 .4 .4 .4 .4 .4

.5 .5 .5 .5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5 .5 .5 .5 .5

Polygon Buffer

Example

.1 1 1 1 1 1 1 1 1 1

.1 .1 1 1 1 1 1 1 1 1

.1 .2 .2 1 1 1 1 1 1 1

.2 .2 .2 .2 1 1 1 1 1 1

.3 .3 .3 .3 .3 1 1 1 1 1

.3 .3 .3 .3 .3 .3 1 1 1 1

.4 .4 .4 .4 .4 .4 .4 1 1 1

.4 .4 .4 .4 .4 .4 .4 .4 1 1

.5 .5 .5 .5 .5 .5 .5 .5 .5 1

.5 .5 .5 .5 .5 .5 .5 .5 .5 .5

.1

.1 .1

.2 .2 .2

.2 .2 .2 .2

.3 .3 .3 .3 .3

.3 .3 .3 .3 .3 .3

.4 .4 .4 .4 .4 .4 .4

.4 .4 .4 .4 .4 .4 .4 .4

.5 .5 .5 .5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5 .5 .5 .5 .5

Polygon Buffer

Example

.1 1 1 1 1 1 1 1 1 1

.1 .1 1 1 1 1 1 1 1 1

.2 .2 .2 1 1 1 1 1 1 1

.2 .2 .2 .2 1 1 1 1 1 1

.3 .3 .3 .3 .3 1 1 1 1 1

.3 .3 .3 .3 .3 .3 1 1 1 1

.4 .4 .4 .4 .4 .4 .4 1 1 1

.4 .4 .4 .4 .4 .4 .4 .4 1 1

.5 .5 .5 .5 .5 .5 .5 .5 .5 1

.5 .5 .5 .5 .5 .5 .5 .5 .5 .5

.7 .7 .7 .7 .7 .7

.6 .6 .6 .6 .6 .6

.5 .5 .5 .5 .5 .5

.4 .4 .4 .4 .4 .4

.3 .3 .3 .3 .3 .3

.2 .2 .2 .2 .2 .2

Polygon Buffer

Example

.1 1 1 1 1 1 1 1 1 1

.1 .1 1 1 1 1 1 1 1 1

.2 .2 .2 1 1 1 1 1 1 1

.2 .2 .2 .2 1 1 1 1 1 1

.3 .3 .3 .3 .3 .7 .7 .7 .7 .7

.3 .3 .3 .3 .3 .3 .6 .6 .6 .6

.4 .4 .4 .4 .4 .4 .4 .5 .5 .5

.4 .4 .4 .4 .4 .4 .4 .4 .4 .4

.5 .5 .5 .5 .3 .3 .3 .3 .3 .3

.5 .5 .5 .5 .2 .2 .2 .2 .2 .2

.7 .7 .7 .7 .7 .7

.6 .6 .6 .6 .6 .6

.5 .5 .5 .5 .5 .5

.4 .4 .4 .4 .4 .4

.3 .3 .3 .3 .3 .3

.2 .2 .2 .2 .2 .2

Polygon Buffer

Computing

pseudodepth
We know how to compute the pseudo

depth of a vertex.

How do we compute the depth of a pixel?

We use bilinear interpolation based on the

depth values for the polygon vertices.

Bilinear interpolation is lerping in 2

dimensions.

Bilinear interpolation

P

x

y

Bilinear interpolation

P

x

y

Q1

Q2

R1

Bilinear interpolation

P

x

y

Q1

Q2

R1

y1

y2

Bilinear interpolation

P

x

y

Q3

Q4

R1
R2

y3

y4

Bilinear interpolation

P

x

y
R1

R2

x1 x2

Depth?

(4,2,0.5)

(1,7,1)

(7,4,0)

Depth?

(4,2,0.5)

(1,7,1)

(7,4,0)

Depth?

(4,2,0.5)

(1,7,1)

(7,4,0)

(2,5,DL)

(6,5,DR)

Interpolation - Y

(2,5,DL) Q1(4,2,0.5) Q2(1,7,1)

DL = (5 – 2)/(7-2)*1 + (7 – 5)/(7-2)*0.5

= (3/5)*1 + 2/5*0.5 = 0.8

(6,5,DR) Q1(7,4,0) Q2(1,7,1)

DR = (5-4)/(7-4)*1 + (7-5)/(7-4)*0

= (1/3)*1 + (2/3)*0 = 0.3

Depth?

(4,2,0.5)

(1,7,1)

(7,4,0)

(2,5,0.8)

(6,5,0.3)

Interpolation - X

(3,5,Depth) R1(2,5,0.8) R2(6,5,0.3)

Depth = (3 – 2)/(6-2)*0.3 + (6-3)/(6-2)*0.8

=1/4*0.3 + 3/4*0.8

= 0.675

Z-fighting
The depth buffer has limited precision

(usually 16 bits).

If two polygons are (almost) parallel small

rounding errors will cause them to "fight" for

which one will be in front, creating strange

effects.

glPolygonOffset
When you have two overlapping polygons

you can get Z-fighting.

To prevent this, you can offset one of the

two polygons using glPolygonOffset().

This method adds a small offset to the

pseudodepth of any vertices added after

the call. You can use this to move a

polygon slightly closer or further away from

the camera.

glPolygonOffset

To use glPolygonOffset you must first

enable it. You can enable offsetting for

points, lines and filled areas separately:

gl.glEnable(

GL2.GL_POLYGON_OFFSET_POINT);

gl.glEnable(

GL2.GL_POLYGON_OFFSET_LINE);

gl.glEnable(

GL2.GL_POLYGON_OFFSET_FILL);

glPolygonOffset

Usually you will call this as either:

//Push polygon back a bit

gl.glPolygonOffset(1.0, 1.0);

//Push polygon forward a bit

gl.glPolygonOffset(-1.0, -1.0);

If this does not give you the results you

need play around with values or check the

(not very clear) documentation

Z-filling
We can combine BSP-trees and Z-

buffering.

We use BSP-trees to represents the static

geometry, so the tree only needs to be built

once (at compile time).

As the landscape is drawn, we write depth

values into the Z-buffer, but we don't do any

testing (as it is unnecessary).

Dynamic objects are drawn in a second

pass, with normal Z-buffer testing.

Transparency

A transparent (or translucent) object lets

some of the light through from the object

behind it.

Transparency

A transparent (or translucent) object lets

some of the light through from the object

behind it.

The alpha channel

When we specify colours we have used 4

components:

• red/green/blue

• alpha - the opacity of the colour

alpha = 1 means the object is opaque

alpha = 0 means the object is completely

transparent (invisible)

Alpha blending

When we draw one object over another, we

can blend their colours according to the

alpha value.

There are many blending equations, but the

usual one is linear interpolation:

Example

If the pixel on the screen is currently green,

and we draw over it with a red pixel,

with alpha = 0.25

Example

Then the result is a mix of red and green.

OpenGL
// Alpha blending is disabled by

// default. To turn it on:

gl.glBlendFunc(

GL2.GL_SRC_ALPHA,

GL2.GL_ONE_MINUS_SRC_ALPHA);

gl.glEnable(GL2.GL_BLEND);

// other blend functions are

// also available

Problems

Alpha blending depends on the order that

pixels are drawn.

You need to draw transparent polygons

after the polygons behind them.

If you are using the depth buffer and you try

to draw the transparent polygon before the

objects behind it, the later objects will not

be drawn.

Back-to-front

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

Back Polygon Buffer

Back-to-front

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

Back Polygon Buffer

Back-to-front

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

Front Polygon Buffer

Back-to-front

8 8 8 8 8

8 8 8 8 8

.5 .5 .5 8 8

.5 .5 .5 8 8

.5 .5 .5 8 8

.5 .5 .5 8 8

.5 .5 .5 8 8

.5 .5 .5 8 8

8 8 8 8 8

8 8 8 8 8

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

Front Polygon Buffer

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1 .

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

Correct

Front-to-back

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

Front Polygon Buffer

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Front-to-back

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

Front Polygon Buffer

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

Front-to-back
Front Polygon Buffer

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

Front-to-back
Front Polygon Buffer

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 .5 .5 .5 1 1

.1 .1 .1 .1 .1 .5 .5 .5 1 1

.1 .1 .1 .1 .1 .5 .5 .5 1 1

.1 .1 .1 .1 .1 .5 .5 .5 1 1

.1 .1 .1 .1 .1 .5 .5 .5 1 1

.1 .1 .1 .1 .1 .5 .5 .5 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.1 .1 .1 .1 .1 1 1 1 1 1

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

Wrong

Transparency
If you want to implement transparency, you

need to ensure your (transparent) polygons

are drawn in back-to-front order.

A BSP tree is one solution for this problem.

Other fudges are to draw your transparent

polygons last, but turn off the depth buffer

writing for the transparent polygons. This will

not result in correct blending, but may be ok.

gl.glDepthMask(false).

Illumination
In this section we will be considering how

much light reaches the camera from the

surface of an object.

In the OpenGL fixed function pipeline these

calculations are performed on vertices and

and then interpolated to determine values

for fragments/pixels.

If we write our own shaders we can do

calculations at the fragment/pixel level.

Achromatic Light

To start with we will consider lighting

equations for achromatic light which has no

colour, but simply a brightness.

We will then extend this to include coloured

lights and coloured objects. The

computations will be identical but will have

separate intensities of red, blue and green

calculated.

Illumination

The colour of an object in a scene depends

on:

• The colour and amount of light that

falls on it.

• The color and reflectivity of the object

There are two kinds of reflection we need to

deal with: diffuse and specular.

Diffuse reflection
Dull or matte surfaces exhibit diffuse

reflection. Light falling on the surface is

reflected uniformly in all directions. It does

not depend on the viewpoint.

incident

reflected

Specular reflection

Polished surfaces exhibit specular

reflection. Light falling on the surface is

reflected at the same angle. Reflections will

look different from different view points.

n

incident reflected

Components

Most objects will have both a diffuse and a

specular component to their illumination.

We will also include an ambient component

to cover lighting from indirect sources.

We will build a lighting equation:

I(P) is the amount of light coming from P to

the camera.

Ingredients
To calculate the lighting equation we need

to know three important vectors:

• The normal vector m to the surface at P

• The view vector v from P to the camera

• The source vector s from P to the light

source.
m v

s

P

θ

Diffuse illumination
Diffuse scattering is equal in all directions

so does not depend on the viewing angle.

The amount of reflected light is inversely

proportional to the area of the face

subtended by the source.

Small angle

= small lit area

= higher intensity

Large angle

= larger lit area

for same light

=lower intensity

Lambert’s Law

We can formalise this as Lambert's Law:

where:

Is is the source intensity, and

ρd is the diffuse reflection coefficient in (0,1)

Note: both vectors are normalised

m
s

P

θ

Lambert’s Law

Note when the light is on the wrong side of

the surface, the cosine is negative. In this

case we want the illumination to be zero.

So:

m

s

Diffuse reflection

coefficient
The coefficient ρd is a property of the

surface.

• Light surfaces have values close to 1 as

they reflect more light

• Dark surfaces have values close to 0 as

they absorb more light

In reality the coefficient varies for different

wavelengths of light so we would have 3

separate values for R, G and B.

Specular reflection

Only mirrors exhibit perfect specular

reflection. On other surfaces there is still

some scattering.

m

incident reflected

Phong model

The Phong model is an approximate model

of specular reflection. It allows us to add

highlights to shiny surfaces.

It looks good for plastic and glass but not

good for polished metal (in which real

reflections are visible).

Phong model

Reflection is brightest around the reflection

vector:

m

r

θ θ

s

Phong model

Reflection is brightest around the reflection

vector :

m

s

Phong model

Reflection is brightest around the reflection

vector:

m

s

-s

Phong model

Reflection is brightest around the reflection

vector:

m

s

-s

Phong model

Reflection is brightest around the reflection

vector:

m

s

-s

θ

r

θ

Phong model

The intensity falls off with the angle φ

between the reflected vector and the view

vector.

m rs

φ

v

Phong model

(0,128)

Phong exponent
Larger values of the Phong exponent f

make cos(φ) f smaller, produce less

scattering, creating more mirror-like

surfaces.

Blinn Phong Model

Opengl fixed function pipeline uses a slight

variant on the Phong model for specular

highlights

The Blinn Phong model uses a vector

halfway between the source and the viewer

instead of calculating the reflection vector.

Blinn-Phong Specular Light

v
s

m
h

β

Note: where s and v are normalised

Reflection

Note that the Phong/ Blinn Phong model

only reflects light sources, not the

environment.

It is good for adding bright highlights but

cannot create a true mirror.

Proper reflections are more complex to

compute (as we'll see later).

Ambient light

Lighting with just diffuse and specular lights

gives very stark shadows.

In reality shadows are not completely black.

Light is coming from all directions, reflected

off other objects, not just from ‘sources’

It is too computationally expensive to model

this in detail.

Ambient light
The solution is to add an ambient light level

to the scene for each light:

where:

Ia is the ambient light intensity

ρa is the ambient reflection coefficient

in the range (0,1) (usually ρa = ρd)

And also to add a global ambient light level

to the scene

Emissive Light

The emissive component of light from an

object O is that which is unrelated to an

external light source.

Emissive light is perceived only by the

viewer and does not illuminate other

objects

Combining Light

Contributions

Combining all Light

Sources
We combine the emissive light from the

object, global ambient light, and the

ambient, diffuse and specular components

from multiple light sources.

Limitations
It is only a local model.

Colour at each vertex V depends only on

the interaction between the light properties

and the material properties at V

It does not take into account

• whether V is obscured from a light source by

another object or shadows

• light that strikes V not having bounced off other

objects (reflections and secondary lighting).

Colour

We implement colour by having separate

red, green and blue components for:

• Light intensities Ia Il

• Reflection coefficients ρa ρd ρsp

The lighting equation is applied three times,

once for each colour.

Colored Light and

surfaces
Ir = ρer + Igarρar +

Ig = ρeg + Igagρag +

Ib = ρeb + Igabρab etc….

Caution

Using too much/many lights can result with

colour components becoming 1 (if they add

up to more than 1 they are clamped).

This can result in things changing ‘colour’

and turning white.

OpenGL

OpenGL supports at least 8 light sources.

Refer to them by the constants:

GL_LIGHT0, GL_LIGHT1,

GL_LIGHT2, ...

Note:

GL_LIGHT1 == GL_LIGHT0 + 1

Default Light Settings

Default Position: (0,0,1,0)

Default Ambient co-efficient: (0,0,0,1)

GL_LIGHT0:

Default diffuse/specular: (1,1,1,1)

All other lights:

Default diffuse/specular: (0,0,0,1)

Enabling Lighting

// enable lighting

gl.glEnable(GL2.GL_LIGHTING);

// enable individual lights

gl.glEnable(GL2.GL_LIGHT0);

gl.glEnable(GL2.GL_LIGHT1);

//etc

Global Ambient

//This sets global ambient

lighting

float[] amb =

{0.1f, 0.2f, 0.3f, 1.0f};

gl.glLightModelfv(

GL_LIGHT_MODEL_AMBIENT, amb, 0);

Setting light intensities

float[] amb = {0.1f, 0.2f, 0.3f, 1.0f};

float[] dif = {1.0f, 0.0f, 0.1f, 1.0f};

float[] spe = {1.0f, 1.0f, 1.0f, 1.0f};

gl.glLightfv(

GL_LIGHT0, GL_AMBIENT, amb, 0);

gl.glLightfv(

GL_LIGHT0, GL_DIFFUSE, dif, 0);

gl.glLightfv(

GL_LIGHT0, GL_SPECULAR,spe, 0);

Material Properties

float[] diffuseCoeff =

{0.8f, 0.2f, 0.0f, 1.0f};

gl.glMaterialfv(GL2.GL_FRONT,

GL2.GL_DIFFUSE, diffuseCoeff,

0);

// all subsequent vertices have

//this property similarly for

// GL_AMBIENT GL_SPECULAR and

//GL_EMISSION

Material Properties

// the Phong exponent is called

// shininess.

float phong = 10f;

gl.glMaterialf(GL2.GL_FRONT,

GL2.GL_SHININESS, phong);

Material Properties

Material properties can be set on a vertex-

by-vertex basis if desired:

gl.glBegin(GL2.GL_POLYGON);

gl.glMaterialfv(GL2.GL_FRONT, GL2.GL_DIFFUSE, red, 0);

gl.glVertex3d(0,0,0);

gl.glMaterialfv(GL2.GL_FRONT, GL2.GL_DIFFUSE, blue, 0);

gl.glVertex3d(1,0,0);

// etc

gl.glEnd();

Alpha Values

• One confusing thing is that each of the

colour components (Ambient,Diffuse,

Specular and Emission) for lights and

materials have an associated 'alpha'

component for setting transparency.

• Only the diffuse colour's alpha value of

the material actually determines the

transparency of the polygon.

Point and directional

lights
We have assumed so far that lights are at a

point in the world, computing the source

vector from this.

These are called point lights

s s

Point light

Positional lights

// set the position to (5,2,3) in the

// current coordinate frame

// Note: we use homogeneous cords

// By using a 1 we are specifying a

// a point or position.

float[] pos = {5,2,3,1};

gl.glLightfv(GL2.GL_LIGHT0,

GL2.GL_POSITION,

pos, 0);

Directional lights

Some lights (like the sun) are so far away

that the source vector is effective the same

everywhere.

These are called directional lights.

s s

Directional

light

Point and directional

lights
We represent a directional light by

specifying its position as a vector rather

than a point:

// a light pointing straight down

// note: the fourth component is 0

float[] dir = {0, -1, 0, 0};

gl.glLightfv(GL2.GL_LIGHT0,

GL2.GL_POSITION, dir, 0);

Spotlights
Point sources emit light equally in all

directions.

For sources like headlights or torches it is

more appropriate to use a spotlight.

A spotlight has a direction and a cutoff

angle,

direction

cutoff

Spotlights

Spotlights are also attenuated, so the

brightness falls off as you move away from

the centre.

where ε is the attenuation factor

direction

β

OpenGL
// create a spotlight

// with 45 degree cutoff

gl.glLightf(GL2.GL_LIGHT0,

GL2.GL_SPOT_CUTOFF, 45);

gl.glLightf(GL2.GL_LIGHT0,

GL2.GL_SPOT_EXPONENT, 4);

gl.glLightfv(GL2.GL_LIGHT0,

GL2.GL_SPOT_DIRECTION, dir, 0);

Distance attenuation

All real light sources also lose intensity with

distance. We usually ignore this.

But OpenGL does support an attenuation

equation:

By default kc = 1, kl = 0, kq = 0

which means no attenuation.

OpenGL

// kc = 2, kl = 1, kq = 0.5

gl.glLightf(GL2.GL_LIGHT0,

GL2.GL_CONSTANT_ATTENUATION, 2);

gl.glLightf(GL2.GL_LIGHT0,

GL2.GL_LINEAR_ATTENUATION, 1);

gl.glLightf(GL2.GL_LIGHT0,

GL2.GL_QUADRATIC_ATTENUATION, 0.5);

LocalViewer

By default OpenGL does not calculate the

true viewing angle and uses a default

vector of v = (0,0,1).

For more accurate calculations for specular

highlights with trade-off of decreased

performance use the setting

gl.glLightModeli(GL2.GL_LIGHT_MODEL

_LOCAL_VIEWER, GL2.GL_TRUE);

Moving Lights

To make the light move with the camera like

a miner’s light set its position to (0,0,1,0) or

(0,0,0,1) while the modelview transform is

the identity

To make the light fixed in world co-

ordinates, set the position after the viewing

transform has been applied and before any

modeling transform is applied.

Moving Lights

To make a light move with an object in the

scene make sure it is subject to the same

modelling transformation as the object

Warning: Before any geometry is rendered,

all the light sources that might affect that

geometry must already be configured and

enabled. In particular, the lights' positions

must be set before rendering any geometry.

Exercise 1

Suppose we have a sphere with

Diffuse and ambient (1,0,0,1)

Specular (1,1,1,1)

What color will the sphere appear to be with

a light with

Specular,diffuse(1,1,1,1) and no ambient?

What color will its specular highlights be?

Solution 1

Diffuse and ambient (1,0,0,1)

Specular (1,1,1,1)

Light: Specular,diffuse(1,1,1,1)

The co-efficients get multiplied so for

diffuse we will get 0 for everything but red.

For specular we will get 1 for all so it will be

white.

Exercise 2

Suppose we have a sphere with

Diffuse and ambient (1,0,0,1)

Specular (1,1,1,1)

What color will the sphere appear to be with

a light with

Specular,diffuse(0,0,1,1) and no ambient?

What color will its specular highlights be?

Solution 2

Diffuse and ambient (1,0,0,1)

Specular (1,1,1,1)

Light: Specular, diffuse(0,0,1,1)

The co-efficients get multiplied so for

diffuse we will get 0 for everything except

the alpha channel so we get black.

For specular we will get 1 for blue.

The graphics pipeline

Projection

transformation
Illumination

Clipping
Perspective

division
ViewportRasterisation

Texturing
Frame

buffer
Display

Hidden

surface

removal

Model-View Transform

Model

Transform

View

Transform

Model

User

The graphics pipeline

Projection

transformation

Vertex

shading

Clipping
Perspective

division
ViewportRasterisation

Fragment

shading

Frame

buffer
Display

Hidden

surface

removal

Model-View Transform

Model

Transform

View

Transform

Model

User

Shading
Illumination (a.k.a shading) is done at two

points in the fixed function pipeline:

• Vertices in the model are shaded

before projection.

• Pixels (fragments) are shaded in the

image after rasterisation.

• Doing more work at the vertex level is

more efficient. Doing more work at the

pixel level can give better results.

Vertex shading

The built-in lighting in OpenGL is mostly

done as vertex shading.

The lighting equations are calculated for

each vertex in the image using the

associated vertex normal.

Illumination

is calculated at

each of these

vertices.

Vertex shading

The normal vector m used to compute the

lighting equation is the normal we specified

when creating the vertex using

gl.glNormal3d(mx, my, mz);

m

Vertex shading

This is why we use different normals on

curved vs flat surfaces, so the vertex may

be lit properly.

m

Vertex shading

Illumination values are attached to each

vertex and carried down the pipeline until

we reach the fragment shading stage.

struct vert {

float[4] pos; // vertex coords

float[4] light; // rgba colour

// other info...

}

Fragment shading

We need to translate vertex illumination

values into appropriate colours for every

pixel that makes up the polygon.

There are three common options:

• Flat shading

• Gouraud shading

• Phong shading

In OpenGL

// Flat shading :

gl.glShadeModel(GL2.GL_FLAT);

// Gouraud shading (default):

gl.glShadeModel(GL2.GL_SMOOTH);

// Phong shading:

// No built-in implementation

Flat shading

The simplest option is to shade the entire

face the same colour:

• Choose one vertex (first for a polygon,

third for a triangle…)

• Take the illumination of that vertex

• Set every pixel to that value.

Flat shading

Flat shading is good for:

• Diffuse illumination

• for flat surfaces

• with distant light sources

It is the fastest shading option.

m

s

m

s

flat surface =

constant normal

distant source =

constant source vector

constant

diffuse illumination

Flat shading
Flat shading is bad for:

• close light sources

• specular shading

• curved surfaces

• Edges between faces

become more pronounced

than they actually are (Mach banding)

m

s

m

s

curved surface =

varying normal

close source =

varying source vector

varying

diffuse + specular illumination

Gouraud shading

Gouraud shading is a simple smooth

shading model.

We calculate fragment colours by bilinear

interpolation on neighbouring vertices.

P

x

y
R1

R2

x1 x2

V1

V2

V3

V4

Gouraud shading

Gouraud shading is good for:

• curved surfaces

• close light sources

• diffuse shading

m

s

m

s

curved surface =

varying normal

varying

diffuse illumination

Gouraud shading
Gouraud shading is only slightly more

expensive than flat shading.

It handles specular highlights poorly.

• It works if the highlight occurs at a

vertex.

• If the highlight would appear in the

middle of a polygon it disappears.

Phong shading
Phong shading is designed to handle specular

lighting better than Gouraud. It also handles

diffuse better as well.

It works by deferring the illumination calculation

until the fragment shading step.

So illumination values are calculated per pixel

rather than per vertex.

Not implemented on the fixed function pipeline.

Need to use the programmable pipeline.

Phong shading
For each pixel we need to know:

• source vector s

• eye vector v

• normal vector m

Knowing the source location, camera

location and pixel location we can compute

s and v.

What about m?

Normal interpolation

Phong shading approximates m by

interpolating the normals of the polygon.

Vertex normals

Normal interpolation

Phong shading approximates m by

interpolating the normals of the polygon.

Interpolated

fragment normals

Normal interpolation

In a 2D polygon we do this using (once

again) bilinear interpolation.

However the interpolated normals will vary

in length, so they need to be normalised

(set length = 1) before being used in the

lighting equation.

Phong shading

Pros:

• Handles specular lighting well.

• Improves diffuse shading

• More physically accurate

Phong shading

Cons:

• Slower than Gouraud . Normals and

illumination values have to be

calculated per pixel rather than per

vertex.

