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Fragments

Rasterisation converts polygons into collections 

of fragments.  A fragment is a single image pixel 

with extra information attached. 

struct frag {

float[3] pos;   // pixel coords and 

// depth info

float[4] color; // rgba colour

// other info...

}



Back face culling
An optimisation called face culling allows non-

visible triangles of closed surfaces (back faces) 

to be culled in the rasteriser.

This avoids unnecessary fragments from being 

created.

Calculate the signed area in window 

coordinates. If it is negative, ignore the polygon.

This is based on the winding order of the 

polygon – front faces are CCW by default.



Back face culling

// Disabled by default

// To turn on culling:

gl.glEnable(GL2.GL_CULL_FACE);

gl.glCullFace(GL2.GL_BACK);



Hidden surface 

removal
We now have a list of fragments expressed in 

screen coordinates and pseudodepth.

For any particular pixel on the screen, we 

need to know what we can see at that pixel.

Some fragments may be behind other 

fragments and should not

be seen



Hidden Surface 

Removal
We will look at 2 approaches to this problem. 

• Make sure all polygons (and therefore 

fragments) are drawn in the correct order 

in terms of depth using BSP trees. This is 

done at the model level. This is not built 

into OpenGL.

• Use the depth buffer. This is done at the 

fragment level and is built into OpenGL.



Painter’s algorithm

The naive approach to hidden surface 

removal:

• Sort polygons by depth

• Draw in order from back to front

This is known as the Painter's algorithm 



Problem

Which polygon to paint first?

We need to split them

into pieces.



BSP Trees
Binary Space Partitioning trees

Not implemented in OpenGL

Each polygon splits the world half

• things behind of the polygon

• things in front of the polygon

We can divide all the other polygons into 

two sets.
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To traverse

If camera is in front of the polygon:

draw what is behind the polygon

draw the polygon

draw what is in front of the polygon

If camera is behind the polygon:

draw what is in front of the polygon

draw the polygon

draw what is behind the polygon
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Example Traversal
The algorithm is first applied to the root node of 

the tree, node 1. Camera is in front of node 1, so 

we recursively traverse the BSP sub-tree 

containing polygons behind 1.

• This tree has root node 4. Camera is 

behind 4 so we traverse the BSP sub-

tree containing polygons in front of 4:

• 5 is a leaf node so we draw it

• Then we draw 4



Example Traversal
• We then traverse the BSP sub-tree 

containing polygons behind 4, this is just 6 

so we draw 6.

We then draw 1 and apply traversal to all nodes in 

front of node 1

• Camera is in front of 2 so the nodes 

behind 2 are traversed. This is just node 3 

which is drawn

• Finally node 2 is drawn



Example Traversal

So the order that we draw the polygons for 

the given camera position is

• 5 4 6 1 3 2
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Good/bad trees

The order of polygons chosen for spliiting

can greatly affect the size of the tree.

Bad choices lead to many splits = big tree.

Optimal tree is hard to find.

Randomly try 5 or 6 times and keep the 

best.



Pros + Cons

Good: If the camera/viewpoint moves the 

tree does not need to be recalculated.

Good: Testing is fast once the tree is built

Bad: Building the tree is slow.

Bad: If the geometry changes, the tree 

must be rebuilt.

Useful for rendering static geometry (eg

walls).



Depth buffer

Another approach to hidden surface 

removal is to keep per-pixel depth 

information.

This is what OpenGL uses.

This is stored in a block of memory called 

the depth buffer (or z-buffer).

d[x][y] = pseudo-depth of pixel (x,y) 



OpenGL

// in init()

gl.glEnable(GL2.GL_DEPTH_TEST);

// in display()

gl.glClear(

GL.GL_COLOR_BUFFER_BIT |

GL.GL_DEPTH_BUFFER_BIT);



Depth buffer

Initially the depth buffer is initialised to the 

far plane depth.

We draw each polygon pixel by pixel.

For each pixel we calculate its pseudodepth 

and compare it to the value in the buffer.

If it is closer, we draw the pixel and update 

the buffer value to the new pseudodepth.



Pseudocode
Initialise db[x][y] = max for 

all x,y

For each polygon:

For each pixel (px,py):

d = pseudodepth of (px,py)

if (d < db[px][py]):

draw pixel

db[x][y] = d
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Computing 

pseudodepth
We know how to compute the pseudo 

depth of a vertex. 

How do we compute the depth of a pixel?

We use bilinear interpolation based on the 

depth values for the polygon vertices.

Bilinear interpolation is lerping in 2 

dimensions.



Bilinear interpolation

P

x

y



Bilinear interpolation

P

x

y

Q1

Q2

R1



Bilinear interpolation

P

x

y

Q1

Q2

R1

y1

y2



Bilinear interpolation

P

x

y

Q3

Q4

R1
R2

y3

y4



Bilinear interpolation

P

x

y
R1

R2

x1 x2



Depth?

(4,2,0.5)

(1,7,1)

(7,4,0)



Depth?

(4,2,0.5)

(1,7,1)

(7,4,0)



Depth?

(4,2,0.5)

(1,7,1)

(7,4,0)

(2,5,DL)

(6,5,DR)



Interpolation - Y

(2,5,DL)  Q1(4,2,0.5) Q2(1,7,1)

DL = (5 – 2)/(7-2)*1 +  (7 – 5)/(7-2)*0.5

= (3/5)*1 + 2/5*0.5 = 0.8

(6,5,DR) Q1(7,4,0) Q2(1,7,1)

DR = (5-4)/(7-4)*1 + (7-5)/(7-4)*0

= (1/3)*1 + (2/3)*0 = 0.3



Depth?
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Interpolation - X

(3,5,Depth) R1(2,5,0.8) R2(6,5,0.3)

Depth = (3 – 2)/(6-2)*0.3 + (6-3)/(6-2)*0.8

=1/4*0.3 + 3/4*0.8

= 0.675



Z-fighting
The depth buffer has limited precision 

(usually 16 bits).

If two polygons are (almost) parallel small 

rounding errors will cause them to "fight" for 

which one will be in front, creating strange 

effects.



glPolygonOffset
When you have two overlapping polygons 

you can get Z-fighting.

To prevent this, you can offset one of the 

two polygons using glPolygonOffset().

This method adds a small offset to the 

pseudodepth of any vertices added after 

the call. You can use this to move a 

polygon slightly closer or further away from 

the camera.



glPolygonOffset

To use glPolygonOffset you must first 

enable it. You can enable offsetting for 

points, lines and filled areas separately:

gl.glEnable(

GL2.GL_POLYGON_OFFSET_POINT);

gl.glEnable(

GL2.GL_POLYGON_OFFSET_LINE);

gl.glEnable(

GL2.GL_POLYGON_OFFSET_FILL);



glPolygonOffset

Usually you will call this as either:

//Push polygon back a bit

gl.glPolygonOffset(1.0, 1.0);

//Push polygon forward a bit

gl.glPolygonOffset(-1.0, -1.0);

If this does not give you the results you 

need play around with values or check the 

(not very clear) documentation



Z-filling
We can combine BSP-trees and Z-

buffering.

We use BSP-trees to represents the static

geometry, so the tree only needs to be built 

once (at compile time).

As the landscape is drawn, we write depth 

values into the Z-buffer, but we don't do any 

testing (as it is unnecessary).

Dynamic objects are drawn in a second 

pass, with normal Z-buffer testing.



Transparency

A transparent (or translucent) object lets 

some of the light through from the object 

behind it.



Transparency

A transparent (or translucent) object lets 

some of the light through from the object 

behind it.



The alpha channel

When we specify colours we have used 4 

components:

• red/green/blue

• alpha - the opacity of the colour

alpha = 1 means the object is opaque

alpha = 0 means the object is completely 

transparent (invisible)



Alpha blending

When we draw one object over another, we 

can blend their colours according to the 

alpha value.

There are many blending equations, but the 

usual one is linear interpolation:



Example

If the pixel on the screen is currently green, 

and we draw over it with a red pixel, 

with alpha = 0.25



Example

Then the result is a mix of red and green.



OpenGL
// Alpha blending is disabled by

// default. To turn it on:

gl.glBlendFunc(

GL2.GL_SRC_ALPHA,

GL2.GL_ONE_MINUS_SRC_ALPHA);

gl.glEnable(GL2.GL_BLEND);

// other blend functions are 

// also available



Problems

Alpha blending depends on the order that 

pixels are drawn.

You need to draw transparent polygons 

after the polygons behind them.

If you are using the depth buffer and you try 

to draw the transparent polygon before the 

objects behind it, the later objects will not 

be drawn.



Back-to-front

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

Back Polygon Buffer



Back-to-front

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

.5 .5 .5 .5 .5 .5

Back Polygon Buffer



Back-to-front

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 .5 .5 .5 .5 .5 .5 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

Front Polygon Buffer



Back-to-front

8 8 8 8 8

8 8 8 8 8

.5 .5 .5 8 8

.5 .5 .5 8 8

.5 .5 .5 8 8

.5 .5 .5 8 8

.5 .5 .5 8 8

.5 .5 .5 8 8

8 8 8 8 8

8 8 8 8 8

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

Front Polygon Buffer

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1 .

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

Correct



Front-to-back

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

.1 .1 .1 .1 .1

Front Polygon Buffer

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1



Front-to-back
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Front-to-back
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Transparency
If you want to implement transparency, you 

need to ensure your (transparent) polygons 

are drawn in back-to-front order.

A BSP tree is one solution for this problem.

Other fudges are to draw your transparent 

polygons last, but turn off the depth buffer 

writing for the transparent polygons. This will 

not result in correct blending, but may be ok.

gl.glDepthMask(false). 



Illumination
In this section we will be considering how 

much light reaches the camera from the 

surface of an object. 

In the OpenGL fixed function pipeline these 

calculations are performed on vertices and 

and then interpolated to determine values 

for fragments/pixels. 

If we write our own shaders we can do 

calculations at the fragment/pixel level.



Achromatic Light

To start with we will consider lighting 

equations for achromatic light which has no 

colour, but simply a brightness.

We will then extend this to include coloured 

lights and coloured objects. The 

computations will be identical but will have 

separate intensities of red, blue and green 

calculated.



Illumination

The colour of an object in a scene depends 

on:

• The colour and amount of light that 

falls on it.

• The color and reflectivity of the object

There are two kinds of reflection we need to 

deal with: diffuse and specular.



Diffuse reflection
Dull or matte surfaces exhibit diffuse 

reflection. Light falling on the surface is 

reflected uniformly in all directions.  It does 

not depend on the viewpoint.

incident

reflected



Specular reflection

Polished surfaces exhibit specular 

reflection. Light falling on the surface is 

reflected at the same angle. Reflections will 

look different from different view points.

n

incident reflected



Components

Most objects will have both a diffuse and a 

specular component to their illumination.

We will also include an ambient component 

to cover lighting from indirect sources.

We will build a lighting equation:

I(P) is the amount of light coming from P to 

the camera.



Ingredients
To calculate the lighting equation we need 

to know three important vectors:

• The normal vector m to the surface at P

• The view vector v from P to the camera

• The source vector s from P to the light 

source.
m v

s

P

θ



Diffuse illumination
Diffuse scattering is equal in all directions 

so does not depend on the viewing angle.

The amount of reflected light is inversely 

proportional to the area of the face 

subtended by the source. 

Small angle

= small lit area

= higher intensity 

Large angle

= larger lit area

for same light

=lower intensity



Lambert’s Law

We can formalise this as Lambert's Law:

where:

Is is the source intensity, and 

ρd is the diffuse reflection coefficient in (0,1)

Note: both vectors are normalised

m
s

P

θ



Lambert’s Law

Note when the light is on the wrong side of 

the surface, the cosine is negative. In this 

case we want the illumination to be zero. 

So:

m

s



Diffuse reflection 

coefficient
The coefficient ρd is a property of the 

surface. 

• Light surfaces have values close to 1 as 

they reflect more light

• Dark surfaces have values close to 0 as 

they absorb more light

In reality the coefficient varies for different 

wavelengths of light so we would have  3 

separate  values for R, G and B.



Specular reflection

Only mirrors exhibit perfect specular 

reflection. On other surfaces there is still 

some scattering.

m

incident reflected



Phong model

The Phong model is an approximate model 

of specular reflection. It allows us to add 

highlights to shiny surfaces. 

It looks good for plastic and glass but not 

good for polished metal (in which real 

reflections are visible).



Phong model

Reflection is brightest around the reflection 

vector:

m

r

θ θ

s



Phong model
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vector :
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Phong model
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vector:
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Phong model

Reflection is brightest around the reflection 

vector:

m

s

-s

θ

r

θ



Phong model

The intensity falls off with the angle φ 

between the reflected vector and the view 

vector.

m rs

φ

v



Phong model

(0,128)



Phong exponent
Larger values of the Phong exponent f

make cos(φ) f smaller, produce less 

scattering, creating more mirror-like 

surfaces. 



Blinn Phong Model

Opengl fixed function pipeline uses a slight 

variant on the Phong model for specular 

highlights

The Blinn Phong model uses a vector 

halfway between the source and the viewer 

instead of calculating the reflection vector.



Blinn-Phong Specular Light

v
s

m
h

β

Note: where s and v are normalised



Reflection

Note that the Phong/ Blinn Phong model 

only reflects light sources, not the 

environment. 

It is good for adding bright highlights but 

cannot create a true mirror.

Proper reflections are more complex to 

compute (as we'll see later).



Ambient light

Lighting with just diffuse and specular lights 

gives very stark shadows.

In reality shadows are not completely black.

Light is coming from all directions, reflected 

off other objects, not just from ‘sources’

It is too computationally expensive to model 

this in detail. 



Ambient light
The solution is to add an ambient light level 

to the scene for each light:

where:

Ia is the ambient light intensity 

ρa is the ambient reflection coefficient 

in the range (0,1) (usually ρa = ρd)

And also to add a global ambient light level 

to the scene 



Emissive Light

The emissive component of light from an 

object O is that which is unrelated to an 

external light source.

Emissive light is perceived only by the 

viewer and does not illuminate other 

objects



Combining Light 

Contributions



Combining all Light 

Sources
We combine the emissive light from the 

object, global ambient light, and the 

ambient, diffuse and specular components 

from multiple light sources.



Limitations
It is only a local model.

Colour at each vertex V depends only on 

the interaction between the  light properties 

and the material properties at V 

It does not take into account

• whether V is obscured from a light source by 

another object or shadows

• light that strikes V not having bounced off other 

objects (reflections and secondary lighting).



Colour

We implement colour by having separate 

red, green and blue components for:

• Light intensities Ia Il

• Reflection coefficients ρa ρd ρsp

The lighting equation is applied three times, 

once for each colour.



Colored Light and 

surfaces
Ir = ρer + Igarρar +

Ig = ρeg + Igagρag +

Ib = ρeb + Igabρab etc….



Caution

Using too much/many lights can result with 

colour components becoming 1 (if they add 

up to more than 1 they are clamped).

This can result in things changing ‘colour’ 

and turning white.



OpenGL

OpenGL supports at least 8 light sources.

Refer to them by the constants:

GL_LIGHT0, GL_LIGHT1, 

GL_LIGHT2, ...

Note:

GL_LIGHT1 == GL_LIGHT0 + 1



Default Light Settings

Default Position: (0,0,1,0)

Default Ambient co-efficient: (0,0,0,1)

GL_LIGHT0: 

Default diffuse/specular: (1,1,1,1)

All other lights:

Default diffuse/specular: (0,0,0,1)



Enabling Lighting

// enable lighting

gl.glEnable(GL2.GL_LIGHTING);

// enable individual lights

gl.glEnable(GL2.GL_LIGHT0);

gl.glEnable(GL2.GL_LIGHT1);

//etc



Global Ambient

//This sets global ambient 

lighting

float[] amb = 

{0.1f, 0.2f, 0.3f, 1.0f};

gl.glLightModelfv(

GL_LIGHT_MODEL_AMBIENT, amb, 0);



Setting light intensities

float[] amb = {0.1f, 0.2f, 0.3f, 1.0f};

float[] dif = {1.0f, 0.0f, 0.1f, 1.0f};

float[] spe = {1.0f, 1.0f, 1.0f, 1.0f};

gl.glLightfv(

GL_LIGHT0, GL_AMBIENT, amb, 0);

gl.glLightfv(

GL_LIGHT0, GL_DIFFUSE, dif, 0);

gl.glLightfv(

GL_LIGHT0, GL_SPECULAR,spe, 0);



Material Properties

float[] diffuseCoeff = 

{0.8f, 0.2f, 0.0f, 1.0f};

gl.glMaterialfv( GL2.GL_FRONT, 

GL2.GL_DIFFUSE, diffuseCoeff, 

0);

// all subsequent vertices have 

//this property similarly for 

// GL_AMBIENT GL_SPECULAR and 

//GL_EMISSION



Material Properties

// the Phong exponent is called 

// shininess. 

float phong = 10f;

gl.glMaterialf( GL2.GL_FRONT, 

GL2.GL_SHININESS, phong);



Material Properties

Material properties can be set on a vertex-

by-vertex basis if desired:

gl.glBegin(GL2.GL_POLYGON);

gl.glMaterialfv(GL2.GL_FRONT, GL2.GL_DIFFUSE, red, 0);

gl.glVertex3d(0,0,0);

gl.glMaterialfv(GL2.GL_FRONT, GL2.GL_DIFFUSE, blue, 0);

gl.glVertex3d(1,0,0);

// etc

gl.glEnd();



Alpha Values

• One confusing thing is that each of the 

colour components (Ambient,Diffuse, 

Specular and Emission) for lights and 

materials have an associated 'alpha' 

component for setting transparency. 

• Only the diffuse colour's alpha value of 

the material actually determines the 

transparency of the polygon.



Point and directional 

lights
We have assumed so far that lights are at a 

point in the world, computing the source 

vector from this.

These are called point lights

s s

Point light



Positional lights

// set the position to (5,2,3) in the

// current coordinate frame

// Note: we use homogeneous cords

// By using a 1 we are specifying a 

// a point or position.

float[] pos = {5,2,3,1};

gl.glLightfv(GL2.GL_LIGHT0,

GL2.GL_POSITION,

pos, 0);



Directional lights

Some lights (like the sun) are so far away 

that the source vector is effective the same 

everywhere.

These are called directional lights.

s s

Directional 

light



Point and directional 

lights
We represent a directional light by 

specifying its position as a vector rather 

than a point:

// a light pointing straight down

// note: the fourth component is 0

float[] dir = {0, -1, 0, 0};

gl.glLightfv(GL2.GL_LIGHT0,

GL2.GL_POSITION, dir, 0);



Spotlights
Point sources emit light equally in all 

directions.

For sources like headlights or torches it is 

more appropriate to use a spotlight.

A spotlight has a direction and a cutoff 

angle,

direction

cutoff



Spotlights

Spotlights are also attenuated, so the 

brightness falls off as you move away from 

the centre.

where ε is the attenuation factor 

direction

β



OpenGL
// create a spotlight

// with 45 degree cutoff

gl.glLightf(GL2.GL_LIGHT0,

GL2.GL_SPOT_CUTOFF, 45);

gl.glLightf(GL2.GL_LIGHT0,

GL2.GL_SPOT_EXPONENT, 4);

gl.glLightfv(GL2.GL_LIGHT0,

GL2.GL_SPOT_DIRECTION, dir, 0);



Distance attenuation

All real light sources also lose intensity with 

distance. We usually ignore this. 

But OpenGL does support an attenuation 

equation:

By default kc = 1, kl = 0, kq = 0 

which means no attenuation.



OpenGL

// kc = 2, kl = 1, kq = 0.5

gl.glLightf(GL2.GL_LIGHT0,

GL2.GL_CONSTANT_ATTENUATION, 2);

gl.glLightf(GL2.GL_LIGHT0,

GL2.GL_LINEAR_ATTENUATION, 1);

gl.glLightf(GL2.GL_LIGHT0,

GL2.GL_QUADRATIC_ATTENUATION, 0.5);



LocalViewer

By default OpenGL does not calculate the 

true viewing angle and uses a default 

vector of v = (0,0,1).

For more accurate calculations for specular 

highlights with trade-off of decreased 

performance use the setting

gl.glLightModeli(GL2.GL_LIGHT_MODEL

_LOCAL_VIEWER, GL2.GL_TRUE); 



Moving Lights

To make the light move with the camera like 

a miner’s light set its position to (0,0,1,0) or 

(0,0,0,1) while the modelview transform is 

the identity

To make the light fixed in world co-

ordinates, set the position after the viewing 

transform has been applied and before any 

modeling transform is applied.



Moving Lights

To make a light move with an object in the 

scene make sure it is subject to the same 

modelling transformation as the object

Warning: Before any geometry is rendered, 

all the light sources that might affect that 

geometry must already be configured and 

enabled. In particular, the lights' positions 

must be set before rendering any geometry. 



Exercise 1

Suppose we have a sphere with

Diffuse and ambient (1,0,0,1)

Specular (1,1,1,1)

What color will the sphere appear to be with 

a light with

Specular,diffuse(1,1,1,1) and no ambient?

What color will its specular highlights be?



Solution 1

Diffuse and ambient (1,0,0,1)

Specular (1,1,1,1)

Light: Specular,diffuse(1,1,1,1) 

The co-efficients get multiplied so for 

diffuse we will get 0 for everything but red.

For specular we will get 1 for all so it will be 

white.



Exercise 2

Suppose we have a sphere with

Diffuse and ambient (1,0,0,1)

Specular (1,1,1,1)

What color will the sphere appear to be with 

a light with

Specular,diffuse(0,0,1,1) and no ambient?

What color will its specular highlights be?



Solution 2

Diffuse and ambient (1,0,0,1)

Specular (1,1,1,1)

Light: Specular, diffuse(0,0,1,1) 

The co-efficients get multiplied so for 

diffuse we will get 0 for everything except 

the alpha channel so we get black.

For specular we will get 1 for blue.



The graphics pipeline

Projection 

transformation
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The graphics pipeline

Projection 

transformation

Vertex 

shading

Clipping
Perspective 

division
ViewportRasterisation

Fragment 

shading

Frame 

buffer
Display

Hidden 

surface 

removal

Model-View Transform

Model 

Transform

View 

Transform

Model

User



Shading
Illumination (a.k.a shading) is done at two 

points in the fixed function pipeline:

• Vertices in the model are shaded 

before projection.

• Pixels (fragments) are shaded in the 

image after rasterisation.

• Doing more work at the vertex level is 

more efficient. Doing more work at the 

pixel level can give better results.



Vertex shading

The built-in lighting in OpenGL is mostly 

done as vertex shading.

The lighting equations are calculated for 

each vertex in the image using the 

associated vertex normal.

Illumination

is calculated at

each of these

vertices.



Vertex shading

The normal vector m used to compute the 

lighting equation is the normal we specified 

when creating the vertex using

gl.glNormal3d(mx, my, mz); 

m



Vertex shading

This is why we use different normals on 

curved vs flat surfaces, so the vertex may 

be lit properly.

m



Vertex shading

Illumination values are attached to each 

vertex and carried down the pipeline until 

we reach the fragment shading stage.

struct vert {

float[4] pos;   // vertex coords

float[4] light; // rgba colour

// other info...

}



Fragment shading

We need to translate vertex illumination 

values into appropriate colours for every 

pixel that makes up the polygon. 

There are three common options:

• Flat shading

• Gouraud shading

• Phong shading 



In OpenGL

// Flat shading :

gl.glShadeModel(GL2.GL_FLAT);

// Gouraud shading (default):

gl.glShadeModel(GL2.GL_SMOOTH);

// Phong shading:

// No built-in implementation



Flat shading

The simplest option is to shade the entire 

face the same colour:

• Choose one vertex (first for a polygon, 

third for a triangle…)

• Take the illumination of that vertex

• Set every pixel to that value.



Flat shading

Flat shading is good for: 

• Diffuse illumination 

• for flat surfaces

• with distant light sources

It is the fastest shading option.

m

s

m

s

flat surface = 

constant normal

distant source = 

constant source vector

constant

diffuse illumination



Flat shading
Flat shading is bad for: 

• close light sources

• specular shading

• curved surfaces

• Edges between faces                       

become more pronounced                      

than they actually are (Mach banding)

m

s

m

s

curved surface = 

varying normal

close source = 

varying source vector

varying

diffuse + specular illumination



Gouraud shading

Gouraud shading is a simple smooth

shading model.

We calculate fragment colours by bilinear 

interpolation on neighbouring vertices.

P
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Gouraud shading

Gouraud shading is good for:

• curved surfaces

• close light sources

• diffuse shading

m

s

m

s

curved surface = 

varying normal

varying

diffuse illumination



Gouraud shading
Gouraud shading is only slightly more 

expensive than flat shading.

It handles specular highlights poorly. 

• It works if the highlight occurs at a 

vertex.

• If the highlight would appear in the 

middle of a polygon it disappears. 



Phong shading
Phong shading is designed to handle specular 

lighting better than Gouraud. It also handles 

diffuse better as well.

It works by deferring the illumination calculation 

until the fragment shading step.

So illumination values are calculated per pixel

rather than per vertex.

Not implemented on the fixed function pipeline. 

Need to use the programmable pipeline.



Phong shading
For each pixel we need to know:

• source vector s

• eye vector v

• normal vector m

Knowing the source location, camera 

location and pixel location we can compute 

s and v.

What about m?



Normal interpolation

Phong shading approximates m by 

interpolating the normals of the polygon.

Vertex normals



Normal interpolation

Phong shading approximates m by 

interpolating the normals of the polygon.

Interpolated

fragment normals



Normal interpolation

In a 2D polygon we do this using (once 

again) bilinear interpolation.

However the interpolated normals will vary 

in length, so they need to be normalised

(set length = 1) before being used in the 

lighting equation. 



Phong shading

Pros:

• Handles specular lighting well.

• Improves diffuse shading

• More physically accurate



Phong shading

Cons:

• Slower than Gouraud . Normals and 

illumination values have to be 

calculated per pixel rather than per 

vertex. 


