
COMP3421

Modeling, Bezier Curves, L-Systems, VBOs

Curves

We want a general purpose solution for

drawing curved lines and surfaces. It

should:

Be easy and intuitive to draw curves

Support a wide variety of shapes,

including both standard circles,

ellipses, etc and "freehand" curves.

Be computationally cheap.

Parametric curves

It is generally useful to express curves in

parametric form:

Eg: (x,y)

2πt

Interpolation

Trigonometric operations like sin() and

cos() are expensive to calculate.

We would like a solution that involves fewer

floating point operations.

We also want a solution which allows for

intuitive curve design.

Interpolating control points is a good

solution to both these problems.

Linear interpolation

Good for straight lines.

Linear function: Degree 1

2 control points: Order 2

P0

P1

t=0

t=1

Quadratic

interpolation

Interpolates (passes through) P0 and P2.

Approximates (passes near) P1.

Tangents at P0 and P2 point to P1.

Curves are all parabolas.

P0

P1

t=0 t=1

P2

de Casteljau

Algorithm
The quadratic interpolation above can be

computed as three linear interpolation

steps:

P0

P1

P2

de Casteljau

Algorithm
The quadratic interpolation above can be

computed as three linear interpolation

steps:

P0

P1

P2

P01

t=0.25

de Casteljau

Algorithm
The quadratic interpolation above can be

computed as three linear interpolation

steps:

P0

P1

P2

P01

P12

t=0.25

de Casteljau

Algorithm
The quadratic interpolation above can be

computed as three linear interpolation

steps:

P0

P1

P2

P01

P12

P

t=0.25

de Casteljau

Algorithm
The quadratic interpolation above can be

computed as three linear interpolation

steps:

P0

P1

P2

P01

P12

P

de Casteljau

Algorithm
The quadratic interpolation above can be

computed as three linear interpolation

steps:

P0

P1

P2

P01

P12

P

de Casteljau

Algorithm
P01(t) = (1-t)P0 + tP1

P12(t) = (1-t)P1 + tP2

P(t) = (1-t)P01 + tP12

= (1-t) ((1-t)P0 + tP1) + t((1-t)P1 + tP2))

= (1-t)^2P0 + 2t(1-t)P1 + t^2P2

Exercise
Using de Casteljau’s algorithm calculate the

point at t = 0.75 for the quadratic Bezier

with the following control points.

(0,0) (4,8) (12,4)

Confirm your answer using the equation

Exercise Solution
P01(0.75) = (0.25)(0,0) + 0.75(4,8) = (3,6)

P12(0.75) = (0.25)(4,8)+ 0.75(12,4)

= (1,2) + (9,3) = (10,5)

P012(0.75) = (0.25)P01 + 0.75P12

= (0.25)(3,6) + 0.75(10,5)

= (0.75, 1.25) + (7.5, 3.75)

= (8.25, 5.25)

Exercise Solution
Or by using the final formula instead:

P(0.75) = (1-t)^2P0 + 2t(1-t)P1 + t^2P2

= 0.25^2(0,0) +

2 * 0.75 * 0.25 (4,8) +

0.75^2 (12,4)

= (8.25, 5.25)

Cubic interpolation

Interpolates (passes through) P0 and P3.

Approximates (passes near) P1 and P2.

Tangents at P0 to P1 and P3 to P2.

A variety of curves.

P0

P1

t=0 t=1

P2

P3 P0

P1

t=0 t=1

P3

P2

de Casteljau

P0

P1 P3

P2

de Casteljau

P0

P1 P3

P2

P01 P23t=0.5
t=0.5P12

t=0.5

de Casteljau

P0

P1 P3

P2

P012

P123t=0.5

t=0.5

P01 P23

P12

de Casteljau

P0

P1 P3

P2

P012

P123

P

t=0.5

de Casteljau

P0

P1 P3

P2

P

Degree and Order

Linear Interpolation: Degree one curve

(m=1), Second Order (2 control points)

Quadratic Interpolation: Degree two curve

(m=2), Third Order (3 control points)

Cubic Interpolation: Degree three curve

(m=3), Fourth Order (4 control points)

Quartic Interpolation: Degree four curve

(m=4), Fifth Order (5 control points)

Etc…

Bézier curves

This family of curves are known as Bézier

curves.

They have the general form:

where m is the degree of the curve

and P0...Pm are the control points.

Bernstein

polynomials
The coefficient functions are called

Bernstein polynomials. They have the

general form:

where:

is the binomial function.

Binomial Function

Remember Pascal’s triangle

Bernstein

polynomials

For the most common case, m = 3:

Bernstein

Polynomials for m = 3

Exercise

What are the Bernstein polynomials for m =

4?

Solution

What are the Bernstein polynomials for m =

4?

𝐵0
4 t = (1 − t)4

𝐵1
4 t = 4t(1 − t)3

𝐵2
4 t = 6𝑡2(1 − t)2

𝐵3
4 t = 4𝑡3 1 − 𝑡
𝐵3
4 t = 𝑡4

Properties
Bézier curves interpolate their endpoints

and approximate all intermediate points.

Bézier curves are convex combinations of

points:

Therefore they are invariant under affine

transformation. The transformation of a

Bézier curve is the curve based on the

transformed control points.

Properties

A Bézier curve lies within the convex hull of

its control points:

P0

P1 P3

P2

Tangents

The tangent vector to the curve at

parameter t is given by:

This is a Bézier curve of degree (m-1) on

the vectors between control points.

Exercise
Compute the tangent to at t = 0.25 for a

quadratic Bezier curve with control points

(0,0) (4,4) (8,2)

P’(t) = 2 * [(1-t)(P1-P0) + t(P2-P1)]

P’(0.25) = 2 * [(0.75) ((4,4) – (0,0)) +

0.25 ((8,2) – (4,4)]

= 2 * [(0.75)(4,4) + 0.25(4,-2)]

= 2 * [(3,3) + (1, -0.5)] = (8,5)

Problem: Polynomial

Degree
The degree of the Bernstein polynomials

used is coupled to the number of control

points: L+1 control points is a combination

of L-degree polynomials.

High degree polynomials are expensive to

compute and are vulnerable to numerical

rounding errors

Problem: Local

control
These curves suffer from non-local control.

Moving one control point affects the entire

curve.

Each Bernstein polynomial is active (non-

zero) over the entire interval (0,1). The

curve is a blend of these functions so every

control point has an effect on the curve for

all t from (0,1)

Splines

A spline is a smooth piecewise-polynomial

function (for some measurement of

smoothness).

The places where the polynomials join are

called knots.

A joined sequence of Bézier curves is an

example of a spline.

Local control

A spline provides local control.

A control point only affects the curve within

a limited neighbourhood.

Bézier splines

We can draw longer curves as sequences

of Bézier sections with common endpoints:

3D Modeling
What if we are sick of teapots?

How can we make our own 3d meshes that

are not just cubes?

We will look at simple examples along with

some clever techniques such as

• Extrusion

• Revolution

Exercise: Cone

How can we model a cone?

There are many ways.

Simple way: Make a circle using a triangle

fan parallel to the x-y plane. For example at

z = -3

Change to middle point to lie at a different

z-point for example z = -1.

Extruding shapes

Extruded shapes are created by sweeping

a 2D polygon along a line or curve.

The simplest example is a prism.

cross-section

copy

rectangles

Variations

One copy of the prism can be translated,

rotated or scaled from the other.

Segmented Extrusions
A square P extruded three times, in different directions with
different tapers and twists. The first segment has end
polygons M0P and M1P, where the initial matrix M0 positions
and orients the starting end of the tube. The second
segment has end polygons M1P and M2P, etc.

Segmented

extrusions
We can extrude a polygon along a path by

specifying it as a series of transformations.

At each point in the path we calculate a

cross-section:

Segmented Extrusion
Sample points along the spine using

different values of t

For each t:

• generate the current point on the spine

• generate a transformation matrix

• multiply each point on the cross section by

the matrix.

• join these points to the next set of points

using quads/triangles.

Segmented Extrusion

Example
For example we may wish to extrude a

circle cross-section around a helix spine.

helix C(t) = (cos(t), sin(t), bt)).

Transformation Matrix

How can we automatically generate a

matrix to transform our cross-section by?

We need the origin of the matrix to be the

new point on the spine. This will translate

our cross-section to the correct location.

Which way will our cross-section be

oriented? What should i, j and k of our

matrix be?

Frenet Frame

We can get the curve values at various

points ti and then build a polygon

perpendicular to the curve at C(ti) using a

Frenet frame.

Example
a). Tangents to the helix. b). Frenet frame

at various values of t, for the helix.

Frenet Frame
Once we calculate the tangent to the spine

at the current point, we can use this to

calculate normals.

We then use the tangent and the 2 normals

as i, j and k vectors of a co-ordinate frame.

We can then build a matrix from these

vectors, using the current point as the origin

of the matrix.

Frenet frame

We align the k axis with the (normalised)

tangent, and choose values of i and j to be

perpendicular.

Frenet Frame

Calculation
Finding the tangent (our k vector):

1. Using maths. Eg for

C(t) = (cos(t), sin(t), bt)

T(t) = normalise(-sin(t),cos(t),b)

2. Or just approximate the tangent

T(t) = normalise(C(t+1) – C(t-1))

Frenet Frame

Calculation
If our tangent at t is the vector

T(x,y,z)

We can use the normal

N(-y,x,0). This will be our i vector

To find the other normal we simply do k x i

Revolution
A surface with radial symmetry (i.e. a round

object, like a ring, a vase, a glass) can be

made by sweeping a half cross-section

around an axis.

Revolution
Take your 2d function which can generate

points for X(t) and Y(t) and sample them for

different values of t and angles of a (angle

of rotation around axis).

//Revolution around the Y-axis

P(t,a) = (X(t)cos a, Y(t), X(t)sin a)

P3(t+1,a+1)

P2(t,a+1)

P1(t+1,a)

P0(t,a)

L-Systems

A Lindenmayer System (or L-System) is a

method for producing fractal structures.

They were initially developed as a tool for

modelling plant growth.

http://madflame991.blogspot.com.au/p/linde

nmayer-power.html

http://madflame991.blogspot.com.au/p/lindenmayer-power.html

Rewrite rules

An L-system is a formal grammar:

a set of symbols and rewrite rules. Eg:

Symbols:

A, B, +, -

Rules:

A → B - A - B

B → A + B + A

Iteration

We start with a given string of symbols and

then iterate, replacing each on the left of a

rewrite rule with the string on the right.

A

B - A - B

A + B + A - B - A - B - A + B + A

B - A - B + A + B + A + B - A - B - ...

Drawing

Each string has a graphical interpretation,

usually using turtle graphics commands:

A = draw forward 1 step

B = draw forward 1 step

+ = turn left 60 degrees

- = turn right 60 degrees

Sierpinski Triangle

This L-System generates the fractal known

as the Sierpinski Triangle:

0 1
2

iterations

3 iterations 4 iterations

5 iterations

Parameters

We can add parameters to our rewrite rules

handle variables like scaling:

A(s) → B(s/2) - A(s/2) - B(s/2)

B(s) → A(s/2) + B(s/2) + A(s/2)

A(s) : draw forward s units

B(s) : draw forward s units

Push and Pop

We can also use a LIFO stack to save and

restore global state like position and

heading:

A → B [+ A] - A

B → B B

A : forward 10 B : forward 10

+: rotate 45 left - : rotate 45 right

[: push] : pop ;

Stochastic

We can add multiple productions with

weights to allow random selection:

(0.5) A → B [A] A

(0.5) A → A

B → B B

Example

(0.5) X → F - [[X] + X] + F [+ F X] - X

(0.5) X → F - F [+ F X] + [[X] + X] - X

F → F F

3D L-Systems

We can build 3D L-Systems by allowing

symbols to translate to models and

transformations of the coordinate frame.

C : draw cylinder mesh

F : translate(0,0,10)

X : rotate(10, 1, 0, 0)

Y : rotate(10, 0, 1, 0)

S : scale(0.5, 0.5, 0.5)

Example

S -> A [+ B] + A

A -> A - A + A - A

B -> BA

After 1 iteration?

After 2 iterations?

After 3 iterations?

: A forward 10

: + rotate 45 (CW)

: - rotate -90

: [push

:] pop

Example in Format

For Web Demo
-> S

1 A [+ B] + A

-> A

1 A - A + A - A

-> B

1 BA

: A

forward 10

: +

rotate 45

: -

rotate -90

: [

push

:]

pop

Example Generation

S -> A [+ B] + A

A -> A - A + A - A

B -> BA

After 1 iteration?

A [+ B] + A

After 2 iterations?

A-A+A-A [+ BA] + A-

A+A-A

After 3 iterations?

A – A + A – A – A - A + A

- A + A - A + A – A ETC

Example Drawing

After 1 iteration?

A [+ B] + A

: A forward 10

: + rotate 45 (CW)

: - rotate -90

: [push

:] pop

Example Drawing

After 2 iterations?

A-A+A-A [+ BA] + A-

A+A-A

: A forward 10

: + rotate 45 (CW)

: - rotate -90

: [push

:] pop

Example Drawing

3 iterations?

A - A + A - A - A - A +

A - A + A - A + A - A

- A - A + A - A [+ BA

] + A - A + A - A - A -

A + A - A + A - A + A -

A - A - A + A - A

Algorithmic Botany

You can read a LOT more here:

http://algorithmicbotany.org/papers/

http://algorithmicbotany.org/papers/

Immediate Mode
Primitives are sent to

pipeline and displayed

right away

More calls to OpenGL

commands

No memory of graphical

entities on server side

– Primitive data lost

after drawing which is

inefficient if we want to

draw object again

Application

Client side

glBegin

glVertex

glEnd

Graphics

Card

Server side

Immediate Mode

Example

glBegin(GL2.GL_TRIANGLES);{

gl.glVertex3d(0,2,-4);

gl.glVertex3d(-2,-2,-4);

gl.glVertex3d(2,-2,-4);

}gl.glEnd();

Retained Mode

Store data in the

graphics card’s

memory instead of

retransmitting every

time

OpenGL can store

data in Vertex Buffer

Objects on Graphics

Card

Application

Client side

Graphics

Card

Server

side

VBO

Vertices
As we know a vertex is a collection of attributes:

position

colors

normal

etc

VBOs store all this data for all the primitives you

want to draw at any one time.

VBOs store this data on the server/graphics card

Client Side Data
// Suppose we have 6 vertices with

// positions and corresponding colors in

// our jogl program

float positions[] = {0,1,-1, -1,-1,-1,

1,-1,-1, 0, 2,-4,

-2,-2,-4, 2,-2,-4};

float colors[] = {1,0,0, 0,1,0,

1,1,1, 0,0,0,

0,0,1, 1,1,0};

Client Side Data
In jogl the VBO commands do not take in arrays.

We need to put them into containers which happen to
be called Buffers. These are still client side

containers and not on the graphics card memory.

FloatBuffer posData =

Buffers.newDirectFloatBuffer(positions);

FloatBuffer colorData =

Buffers.newDirectFloatBuffer(cols);

Our data is now ready to be loaded into a VBO.

Vertex Buffer Objects

VBOs are allocated by glGenBuffers which

creates int IDs for each buffer created.

//For example generating two bufferIDs

int bufferIDs[] = new int[2];

gl.glGenBuffers(2, bufferIDs,0);

VBO Targets

There are different types of buffer objects.

For example:

GL_ARRAY_BUFFER is the type used

for storing vertex attribute data

GL_ELEMENT_ARRAY_BUFFER can

be used to store indexes to vertex

attribute array data

Indexing

With indexing you need

an extra VBO to store index data.

Binding VBO targets
//Bind GL_ARRAY_BUFFER to the

//VBO. This makes the buffer the

//current buffer for

//reading/writing vertex array

//data

gl.glBindBuffer(GL2.GL_ARRAY_BUFFER

, bufferIDs[0]);

Vertex Display

Buffers
// Upload data into the current VBO

gl.glBufferData(int target,

int size,

Buffer data,

int usage);

//target – GL2.GL_ARRAYBUFFER,

//GL2.GL_ELEMENT_ARRAY_BUFFER etc

//size – of data in bytes

//data – the actual data

//usage – a usage hint

VBO Usage Hints

GL2.GL_STATIC_DRAW: data is expected

to be used many times without modification.

Optimal to store on graphics card.

GL2.GL_STREAM_DRAW: data used only

a few times. Not so important to store on

graphics card

GL2.GL_DYNAMIC_DRAW: data will be

changed many times

Vertex Display

Buffers
// Upload data into the current VBO

// For our example if we were only

// loading positions we could use

gl.glBufferData(GL2.GL_ARRAYBUFFER,

posData.length*Float.BYTES,

posData,

GL2.GL_STATIC_DRAW);

Vertex Display

Buffers
// Upload data into the current VBO

// For our example if we were wanting

// to load position and color data

// we could create an empty buffer of the

// desired size and then load in each

// section of data using glBufferSubData

gl.glBufferData(GL2.GL_ARRAY_BUFFER,

positions.length*Float.BYTES +

colors.length*Float.BYTES,

null, GL2.GL_STATIC_DRAW);

Vertex Display

Buffers
//Specify part of data stored in the

//current VBO once buffer has been made

//For example vertex positions and color

//data may be stored back to back

gl.glBufferSubData(int target,

int offset, //in bytes

int size, //in bytes

Buffer data

);

Vertex Display

Buffers
//Specify part of data stored in the

//current VBO once buffer has been made

//For example vertex positions and color

//data may be stored back to back

gl.glBufferSubData(GL2.GL_ARRAY_BUFFER,

0,positions.length*Float.BYTES,posData);

gl.glBufferSubData(GL2.GL_ARRAY_BUFFER,

positions.length*Float.BYTES, //offset

colors.length*Float.BYTES,colorData);

VBOs
Application Program Graphics Card

VBO ID
GL_ARRAY_BUFFER

Color Data []

Vertex Data []

Color Data []

VBO

Vertex Data []

Using VBOs

All we have done so far is copy data from

the client program to the Graphics card.

This is done when glBufferData or

glBufferSubData is called.

We need to tell the graphics pipeline what

is in the buffer – for example which parts of

the buffer have the position data vs the

color data.

Using VBOs
To tell the graphics pipeline that we want it

to use our vertex position and color data

//Enable client state

gl.glEnableClientState(

GL2.GL_VERTEX_ARRAY);

gl.glEnableClientState(

GL2.GL_COLOR_ARRAY);

//For other types of data

gl.glEnableClientState(

GL2.GL_NORMAL_ARRAY);//etc

Using VBOs with

Shaders
To link your vbo to your shader inputs (you

get to decide what they are called and used

for), instead of gl.glEnableClientState,
//assuming the vertex shader has

//in vec4 vertexPos;

int vPos =

gl.glGetAttribLocation(shaderprogram,

"vertexPos");

gl.glEnableVertexAttribArray(vPos);

Using VBOs
//Tell OpenGL where to find data

gl.glVertexPointer(int size,

int type,

int stride,

long vboOffset);

//size – number of co-ords per vertex

//type – GL2.GL_FLOAT etc

//stride – distance in bytes between

beginning of vertex locations.

//vboOffset – offset in number of bytes

of data location

Using VBOs

//Tell OpenGL where to find other data.

//Must have 1-1 mapping with the vertex

//array

gl.glColorPointer(int size,

int type,

int stride,

long vboOffset);

gl.glNormalPointer(int type,

int stride,

long vboOffset);

Using VBOs
// Tell OpenGL where to find data

// In our example each position has 3

// float co-ordinates. Positions are not

// interleaved with other data and are

// at the start of the buffer

gl.glVertexPointer(3,GL.GL_FLOAT,0, 0);

// In our example color data is found

// after all the position data

gl.glColorPointer(3,GL.GL_FLOAT,0,

positions.length*Float.BYTES);

Using VBOs with

Shaders
//Tell OpenGL where to find data

gl.glVertexAttribPointer(int index,

int size, int type, boolean normalised,

int stride, long vboOffset);

//index – shader attribute index

//normalised – whether to normalize the

//data

gl.glVertexAttribPointer(vPos,3,

GL.GL_FLOAT, false,0, 0);

VBOs
Application Program Graphics Card

VBO ID
GL_ARRAY_BUFFER

Color Data []

Vertex Data []

Color Data []

VBO

Vertex Data []

GL_COLOR_ARRAY

GL_VERTEX_ARRAY

Drawing with VBOs

// Draw something using the data

// sequentially

gl.glDrawArrays(int mode,

int first,

int count);

//mode – GL_TRIANGLES etc

//first - index of first vertex to be

//drawn

//count - number of vertices to be used.

Drawing with VBOs

//In our example we have data for 2

//triangles, so 6 vertices

//and we are starting at the

//vertex at index 0

gl.glDrawArrays(GL2.GL_TRIANGLES,0,6);

//This would just draw the second triangle

gl.glDrawArrays(GL2.GL_TRIANGLES,3,6);

Indexed Drawing

// Draw something using indexed data

gl.glDrawElements(int mode, int count,

int type, long offset);

//mode – GL_TRIANGLES etc

//count - number of indices to be used.

//type – type of index array – should be

//unsigned and smallest type possible.

//offset – in bytes!

Indexed Drawing

//Suppose we want to use indexes to

//access our data

short indexes[] = {0,1,5,3,4,2};

ShortBuffer indexedData =

Buffers.newDirectShortBuffer(indexes);

//Set up another buffer for //the

indexes

gl.glBindBuffer(GL2.GL_ELEMENT_ARRAY_BUF

FER, bufferIDs[1]);

Indexed Drawing

//load index data

gl.glBufferData(

GL2.GL_ELEMENT_ARRAY_BUFFER,

indexes.length *Short.BYTES,

indexData,

GL2.GL_STATIC_DRAW);

//draw the data

gl.glDrawElements(GL2.GL_TRIANGLES, 6,

GL2.GL_UNSIGNED_SHORT, 0);

Updating a VBO

• Copy new data into the bound VBO with

gl.glBufferData() or

glBufferSubData()

• map the buffer object into client's

memory, so that client can update data

with the pointer to the mapped buffer

glMapBuffer()

Drawing Multiple

Objects
Must make many calls each time we draw

each new shape.

glBindBuffer

glVertexPointer

glColorPointer

glNormalPointer

etc

Vertex Array Object

(VAO)
Encapsulates vbo and vertex attribute

states to rapidly switch between states

using one openGL call.

gl.glBindVertexArray(vaoIDs[0]);

First generate vao ids.

int vaoIDs[] = new int[2];

gl.glGenVertexArrays(2, vaoIDs,0);

Set up VAOs
//Assume vbos and vao ids have been set up.

gl.glBindVertexArray(vaoIds[0]);

gl.glBindBuffer(GL2.GL_ARRAY_BUFFER,vboIds[0]);

gl.glEnableClientState…

gl.glVertexPointer… //etc other calls

gl.glBindVertexArray(vaoIds[1]);

gl.glBindBuffer(GL2.GL_ARRAY_BUFFER,vboIds[1]);

gl.glEnableClientState..

gl.glVertexPointer

//etc other calls

VAO switching

//Once vaos have been set up

gl.glBindVertexArray(vaoIds[0]);

gl.glDrawArrays(GL2.GL_TRIANGLES,0,N);

gl.glBindVertexArray(vaoIds[1]);

gl.glDrawArrays(GL2.GL_TRIANGLES,0,M);

//Use no vao

gl.glBindVertexArray(0);

Deleting a VBOs and

VAOs
To free VBOs and VAOs once you do not need

them anymore.

gl.glDeleteBuffers(2,vboIds,0);

gl.glDeleteVertexArray(2,vaoIds,0);

