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Modeling, Bezier Curves, L-Systems, VBOs



Curves

We want a general purpose solution for 

drawing curved lines and surfaces. It 

should:

Be easy and intuitive to draw curves

Support a wide variety of shapes, 

including both standard circles, 

ellipses, etc and "freehand" curves.

Be computationally cheap.



Parametric curves

It is generally useful to express curves in 

parametric form:

Eg: (x,y)

2πt



Interpolation

Trigonometric operations like sin() and 

cos() are expensive to calculate.

We would like a solution that involves fewer 

floating point operations.

We also want a solution which allows for 

intuitive curve design.

Interpolating control points is a good 

solution to both these problems.



Linear interpolation

Good for straight lines. 

Linear function: Degree 1

2 control points: Order 2

P0

P1

t=0

t=1



Quadratic 

interpolation

Interpolates (passes through) P0 and P2. 

Approximates (passes near) P1.

Tangents at P0 and P2 point to P1. 

Curves are all parabolas.

P0

P1

t=0 t=1

P2



de Casteljau 

Algorithm
The quadratic interpolation above can be 

computed as three linear interpolation 

steps:
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de Casteljau 

Algorithm
The quadratic interpolation above can be 

computed as three linear interpolation 

steps:
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de Casteljau

Algorithm
P01(t) = (1-t)P0 + tP1

P12(t) = (1-t)P1 + tP2

P(t) = (1-t)P01 + tP12

= (1-t) ((1-t)P0 + tP1) + t((1-t)P1 + tP2))

= (1-t)^2P0 + 2t(1-t)P1 + t^2P2



Exercise
Using de Casteljau’s algorithm calculate the 

point at t = 0.75 for the quadratic Bezier 

with the following control points.

(0,0) (4,8) (12,4)

Confirm your answer using the equation



Exercise Solution
P01(0.75) = (0.25)(0,0) + 0.75(4,8) = (3,6)

P12(0.75) = (0.25)(4,8)+ 0.75(12,4) 

= (1,2) + (9,3) = (10,5)

P012(0.75) = (0.25)P01 + 0.75P12

= (0.25)(3,6) + 0.75(10,5)

= (0.75, 1.25) + (7.5, 3.75) 

= (8.25, 5.25)



Exercise Solution
Or by using the final formula instead:

P(0.75) = (1-t)^2P0 + 2t(1-t)P1 + t^2P2

= 0.25^2(0,0) + 

2 * 0.75 * 0.25 (4,8) +

0.75^2 (12,4)

= (8.25, 5.25)



Cubic interpolation

Interpolates (passes through) P0 and P3. 

Approximates (passes near) P1 and P2.

Tangents at P0 to P1 and P3 to P2. 

A variety of curves.

P0

P1

t=0 t=1

P2

P3 P0

P1

t=0 t=1

P3

P2



de Casteljau

P0
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P2



de Casteljau
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de Casteljau
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de Casteljau
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P



Degree and Order

Linear Interpolation: Degree one curve 

(m=1), Second Order (2 control points)

Quadratic Interpolation: Degree two curve 

(m=2), Third Order (3 control points)

Cubic Interpolation: Degree three curve 

(m=3), Fourth Order (4 control points)

Quartic Interpolation: Degree four curve 

(m=4), Fifth Order (5 control points)

Etc…



Bézier curves

This family of curves are known as Bézier 

curves.

They have the general form:

where m is the degree of the curve 

and P0...Pm are the control points.



Bernstein 

polynomials
The coefficient functions            are called 

Bernstein polynomials. They have the 

general form:

where:

is the binomial function.



Binomial Function

Remember Pascal’s triangle



Bernstein 

polynomials

For the most common case, m = 3:



Bernstein 

Polynomials for m = 3 



Exercise

What are the Bernstein polynomials for m = 

4?



Solution

What are the Bernstein polynomials for m = 

4?

𝐵0
4 t = (1 − t)4

𝐵1
4 t = 4t(1 − t)3

𝐵2
4 t = 6𝑡2(1 − t)2

𝐵3
4 t = 4𝑡3 1 − 𝑡
𝐵3
4 t = 𝑡4



Properties
Bézier curves interpolate their endpoints 

and approximate all intermediate points.

Bézier curves are convex combinations of 

points:

Therefore they are invariant under affine 

transformation.  The transformation of a 

Bézier curve is the curve based on the 

transformed control points. 



Properties

A Bézier curve lies within the convex hull of 

its control points:

P0

P1 P3

P2



Tangents

The tangent vector to the curve at 

parameter t is given by:

This is a Bézier curve of degree (m-1) on 

the vectors between control points.



Exercise
Compute the tangent to at t = 0.25 for a 

quadratic Bezier curve with control points 

(0,0) (4,4) (8,2)

P’(t) = 2 * [(1-t)(P1-P0) + t(P2-P1)]

P’(0.25) = 2 * [ (0.75) ((4,4) – (0,0))  + 

0.25 ((8,2) – (4,4) ] 

= 2 * [ (0.75)(4,4) + 0.25(4,-2)]

= 2 * [ (3,3) + (1, -0.5)] = (8,5)



Problem: Polynomial 

Degree
The degree of the Bernstein polynomials 

used is coupled to the number of control 

points: L+1 control points is a combination 

of L-degree polynomials.

High degree polynomials are expensive to 

compute and are vulnerable to numerical 

rounding errors



Problem: Local 

control
These curves suffer from non-local control. 

Moving one control point affects the entire 

curve.

Each Bernstein polynomial is active (non-

zero) over the entire interval (0,1). The 

curve is a blend of these functions so every 

control point has an effect on the curve for 

all t from (0,1)



Splines

A spline is a smooth piecewise-polynomial 

function (for some measurement of 

smoothness).

The places where the polynomials join are 

called knots.

A joined sequence of Bézier curves is an 

example of a spline.



Local control

A spline provides local control. 

A control point only affects the curve within 

a limited neighbourhood.



Bézier splines

We can draw longer curves as sequences 

of Bézier sections with common endpoints:



3D Modeling
What if we are sick of teapots?

How can we make our own 3d meshes that 

are not just cubes?

We will look at simple examples along with 

some clever techniques such as

• Extrusion

• Revolution



Exercise: Cone

How can we model a cone?

There are many ways.

Simple way: Make a circle using a triangle 

fan parallel to the x-y plane. For example at 

z = -3

Change to middle point to lie at a different 

z-point for example z = -1.



Extruding shapes

Extruded shapes are created by sweeping 

a 2D polygon along a line or curve.

The simplest example is a prism.

cross-section

copy

rectangles



Variations

One copy of the prism can be translated, 

rotated or scaled from the other.



Segmented Extrusions
A square P extruded three times, in different directions with 
different tapers and twists. The first segment has end 
polygons M0P and M1P, where the initial matrix M0 positions 
and orients the starting end of the tube. The second 
segment has end polygons M1P and M2P, etc. 



Segmented 

extrusions
We can extrude a polygon along a path by 

specifying it as a series of transformations.

At each point in the path we calculate a 

cross-section:



Segmented Extrusion
Sample points along the spine using 

different values of t

For each t:

• generate the current point on the spine

• generate a transformation matrix

• multiply each point on the cross section by 

the matrix.

• join these points to the next set of points 

using quads/triangles.



Segmented Extrusion 

Example
For example we may wish to extrude a 

circle cross-section around  a helix spine.

helix C(t) = (cos(t), sin(t), bt)).



Transformation Matrix

How can we automatically generate a 

matrix to transform our cross-section by?

We need the origin of the matrix to be the 

new point on the spine. This will translate 

our cross-section to the correct location. 

Which way will our cross-section be 

oriented? What should i, j and k of our 

matrix be?



Frenet Frame

We can get the curve values at various 

points ti and then build a polygon 

perpendicular to the curve at C(ti) using a 

Frenet frame.



Example
a). Tangents to the helix.  b). Frenet frame 

at various values of t, for the helix. 



Frenet Frame
Once we calculate the tangent to the spine 

at the current point, we can use this to 

calculate normals. 

We then use the tangent and the 2 normals

as i, j and k vectors of a co-ordinate frame.

We can then build a matrix from these 

vectors, using the current point as the origin 

of the matrix. 



Frenet frame

We align the k axis with the (normalised) 

tangent, and choose values of i and j to be 

perpendicular.



Frenet Frame 

Calculation
Finding the tangent (our k vector): 

1. Using maths. Eg for

C(t) = (cos(t), sin(t), bt)

T(t) = normalise(-sin(t),cos(t),b)

2. Or just approximate the tangent

T(t) = normalise(C(t+1) – C(t-1))



Frenet Frame 

Calculation
If our tangent at t is the vector 

T(x,y,z) 

We can use the normal

N(-y,x,0). This will be our i vector

To find the other normal we simply do k x i



Revolution
A surface with radial symmetry (i.e. a round 

object, like a ring, a vase, a glass) can be 

made by sweeping a half cross-section 

around an axis.



Revolution
Take your 2d function which can generate 

points for X(t) and Y(t) and sample them for 

different values of t and angles of a (angle 

of rotation around axis).

//Revolution around the Y-axis

P(t,a) = (X(t)cos a, Y(t), X(t)sin a) 

P3(t+1,a+1)

P2(t,a+1)

P1(t+1,a)

P0(t,a)



L-Systems

A Lindenmayer System (or L-System) is a 

method for producing fractal structures.

They were initially developed as a tool for 

modelling plant growth.

http://madflame991.blogspot.com.au/p/linde

nmayer-power.html

http://madflame991.blogspot.com.au/p/lindenmayer-power.html


Rewrite rules

An L-system is a formal grammar: 

a set of symbols and rewrite rules. Eg:

Symbols:    

A, B, +, -

Rules:

A → B - A - B

B → A + B + A



Iteration

We start with a given string of symbols and 

then iterate, replacing each on the left of a 

rewrite rule with the string on the right.

A

B - A - B

A + B + A - B - A - B - A + B + A

B - A - B + A + B + A + B - A - B - ...



Drawing

Each string has a graphical interpretation, 

usually using turtle graphics commands:

A = draw forward 1 step

B = draw forward 1 step

+ = turn left 60 degrees

- = turn right 60 degrees



Sierpinski Triangle

This L-System generates the fractal known 

as the Sierpinski Triangle:

0 1
2

iterations

3 iterations 4 iterations

5 iterations



Parameters

We can add parameters to our rewrite rules 

handle variables like scaling:

A(s) → B(s/2) - A(s/2) - B(s/2)

B(s) → A(s/2) + B(s/2) + A(s/2)

A(s) :  draw forward s units

B(s) :  draw forward s units



Push and Pop

We can also use a LIFO stack to save and 

restore global state like position and 

heading: 

A → B [  + A ]  - A

B → B B

A : forward 10      B : forward 10

+: rotate 45 left    - : rotate 45 right

[ : push ] : pop ; 



Stochastic

We can add multiple productions with 

weights to allow random selection:

(0.5) A → B [ A ] A

(0.5) A → A

B → B B



Example

(0.5) X → F - [ [ X ] + X ] + F [ + F X ] - X

(0.5) X → F - F [ + F X ] + [ [ X ] + X ] - X

F → F F



3D L-Systems

We can build 3D L-Systems by allowing 

symbols to translate to models and 

transformations of the coordinate frame.

C : draw cylinder mesh

F : translate(0,0,10)

X : rotate(10, 1, 0, 0)

Y : rotate(10, 0, 1, 0)

S : scale(0.5, 0.5, 0.5)



Example

S -> A [ + B ]  + A

A -> A - A +  A - A  

B -> BA

After 1 iteration?

After 2 iterations?

After 3 iterations?

: A forward 10

: + rotate 45 (CW)

: - rotate -90

: [  push

: ]  pop



Example in Format 

For Web Demo
-> S

1 A [ + B ]  + A

-> A

1 A - A +  A - A  

-> B

1 BA

: A

forward 10

: +

rotate 45

: -

rotate -90 

: [

push

: ]

pop



Example Generation

S -> A [ + B ]  + A

A -> A - A +  A - A  

B -> BA

After 1 iteration?

A [ + B ] + A

After 2 iterations?

A-A+A-A [ + BA ] + A-

A+A-A 

After 3 iterations?

A – A + A – A – A - A + A 

- A + A - A + A – A ETC



Example Drawing

After 1 iteration?

A [ + B ] + A

: A forward 10

: + rotate 45 (CW)

: - rotate -90

: [  push

: ]  pop



Example Drawing

After 2 iterations?

A-A+A-A [ + BA ] + A-

A+A-A 

: A forward 10

: + rotate 45 (CW)

: - rotate -90

: [  push

: ]  pop



Example Drawing

3 iterations?

A - A + A - A  - A - A + 

A - A  + A - A + A - A  

- A - A + A - A   [ + BA 

] + A - A + A - A  - A -

A + A - A  + A - A + A -

A  - A - A + A - A 



Algorithmic Botany

You can read a LOT more here:

http://algorithmicbotany.org/papers/

http://algorithmicbotany.org/papers/


Immediate Mode
Primitives are sent to 

pipeline and displayed 

right away

More calls to OpenGL 

commands

No memory of graphical 

entities on server side

– Primitive data lost 

after drawing which is 

inefficient if we want to 

draw object again

Application

Client side

glBegin

glVertex

glEnd

Graphics 

Card

Server side



Immediate Mode 

Example

glBegin(GL2.GL_TRIANGLES);{

gl.glVertex3d(0,2,-4);

gl.glVertex3d(-2,-2,-4);

gl.glVertex3d(2,-2,-4);

}gl.glEnd();



Retained Mode

Store data in the 

graphics card’s 

memory instead of 

retransmitting every 

time

OpenGL can store 

data in Vertex Buffer 

Objects on Graphics 

Card

Application

Client side

Graphics 

Card

Server 

side

VBO



Vertices
As we know a vertex is a collection of attributes:

position

colors

normal

etc

VBOs store all this data for all the primitives you 

want to draw at any one time.

VBOs store this data on the server/graphics card



Client Side Data
// Suppose we have 6 vertices with     

// positions and corresponding colors in 

// our jogl program

float positions[] = {0,1,-1, -1,-1,-1,

1,-1,-1, 0, 2,-4,

-2,-2,-4, 2,-2,-4};

float colors[] = {1,0,0, 0,1,0,

1,1,1, 0,0,0,

0,0,1, 1,1,0}; 



Client Side Data
In jogl the VBO commands do not take in arrays.

We need to put them into containers which happen to 
be called Buffers. These are still client side 

containers and not on the graphics card memory.

FloatBuffer posData = 

Buffers.newDirectFloatBuffer(positions);

FloatBuffer colorData = 

Buffers.newDirectFloatBuffer(cols);

Our data is now ready to be loaded into a VBO.



Vertex Buffer Objects

VBOs are allocated by glGenBuffers which 

creates int IDs for each buffer created.

//For example generating two bufferIDs

int bufferIDs[] = new int[2];

gl.glGenBuffers(2, bufferIDs,0);



VBO Targets

There are different types of buffer objects.

For example:

GL_ARRAY_BUFFER is the type used 

for storing vertex attribute data

GL_ELEMENT_ARRAY_BUFFER can 

be used to store indexes to vertex 

attribute array data



Indexing

With indexing you need 

an extra VBO to store index data.



Binding VBO targets
//Bind GL_ARRAY_BUFFER to the 

//VBO. This makes the buffer the 

//current buffer for 

//reading/writing vertex array 

//data 

gl.glBindBuffer(GL2.GL_ARRAY_BUFFER

, bufferIDs[0]);



Vertex Display 

Buffers
// Upload data into the current VBO

gl.glBufferData(int target, 

int size, 

Buffer data,

int usage);

//target – GL2.GL_ARRAYBUFFER, 

//GL2.GL_ELEMENT_ARRAY_BUFFER etc

//size – of data in bytes 

//data – the actual data

//usage – a usage hint



VBO Usage Hints

GL2.GL_STATIC_DRAW: data is expected 

to be used many times without modification. 

Optimal to store on graphics card.

GL2.GL_STREAM_DRAW: data used only 

a few times. Not so important to store on 

graphics card

GL2.GL_DYNAMIC_DRAW: data will be 

changed many times



Vertex Display 

Buffers
// Upload data into the current VBO

// For our example if we were only 

// loading positions we could use

gl.glBufferData(GL2.GL_ARRAYBUFFER,      

posData.length*Float.BYTES,

posData,

GL2.GL_STATIC_DRAW);



Vertex Display 

Buffers
// Upload data into the current VBO

// For our example if we were wanting

// to load position and color data

// we could create an empty buffer of the 

// desired size and then load in each

// section of data using glBufferSubData

gl.glBufferData(GL2.GL_ARRAY_BUFFER,      

positions.length*Float.BYTES +  

colors.length*Float.BYTES,

null, GL2.GL_STATIC_DRAW);



Vertex Display 

Buffers
//Specify part of data stored in the 

//current VBO once buffer has been made

//For example vertex positions and color

//data may be stored back to back 

gl.glBufferSubData(int target, 

int offset, //in bytes

int size,   //in bytes

Buffer data

);



Vertex Display 

Buffers
//Specify part of data stored in the 

//current VBO once buffer has been made

//For example vertex positions and color

//data may be stored back to back 

gl.glBufferSubData(GL2.GL_ARRAY_BUFFER, 

0,positions.length*Float.BYTES,posData);

gl.glBufferSubData(GL2.GL_ARRAY_BUFFER,

positions.length*Float.BYTES, //offset 

colors.length*Float.BYTES,colorData);



VBOs
Application Program      Graphics Card

VBO ID
GL_ARRAY_BUFFER

Color Data []

Vertex Data []

Color Data []

VBO

Vertex Data []



Using VBOs

All we have done so far is copy data from 

the client program to the Graphics card.  

This is done when glBufferData or 

glBufferSubData is called.

We need to tell the graphics pipeline what 

is in the buffer – for example which parts of 

the buffer have the position data vs the 

color data. 



Using VBOs
To tell the graphics pipeline that we want it 

to use our vertex position and color data

//Enable client state

gl.glEnableClientState( 

GL2.GL_VERTEX_ARRAY);

gl.glEnableClientState( 

GL2.GL_COLOR_ARRAY);

//For other types of data

gl.glEnableClientState( 

GL2.GL_NORMAL_ARRAY);//etc



Using VBOs with 

Shaders
To link your vbo to your shader inputs (you 

get to decide what they are called and used 

for), instead of gl.glEnableClientState, 
//assuming the vertex shader has

//in vec4 vertexPos;

int vPos = 

gl.glGetAttribLocation(shaderprogram,

"vertexPos");

gl.glEnableVertexAttribArray(vPos);



Using VBOs
//Tell OpenGL where to find data

gl.glVertexPointer(int size,

int type,

int stride,

long vboOffset);

//size – number of co-ords per vertex

//type – GL2.GL_FLOAT etc

//stride – distance in bytes between 

beginning of vertex locations.

//vboOffset – offset in number of bytes 

of data location



Using VBOs

//Tell OpenGL where to find other data.

//Must have 1-1 mapping with the vertex 

//array  

gl.glColorPointer(int size,

int type,

int stride,

long vboOffset);

gl.glNormalPointer(int type,

int stride,

long vboOffset);



Using VBOs
// Tell OpenGL where to find data

// In our example each position has 3 

// float co-ordinates. Positions are not 

// interleaved with other data and are 

// at the start of the buffer 

gl.glVertexPointer(3,GL.GL_FLOAT,0, 0);

// In our example color data is found 

// after all the position data

gl.glColorPointer(3,GL.GL_FLOAT,0,

positions.length*Float.BYTES );



Using VBOs with 

Shaders
//Tell OpenGL where to find data

gl.glVertexAttribPointer(int index,

int size, int type, boolean normalised,

int stride, long vboOffset);

//index – shader attribute index

//normalised – whether to normalize the 

//data

gl.glVertexAttribPointer(vPos,3, 

GL.GL_FLOAT, false,0, 0); 



VBOs
Application Program      Graphics Card

VBO ID
GL_ARRAY_BUFFER

Color Data []

Vertex Data []

Color Data []

VBO

Vertex Data []

GL_COLOR_ARRAY

GL_VERTEX_ARRAY



Drawing with VBOs

// Draw something using the data 

// sequentially

gl.glDrawArrays(int mode,

int first,

int count);

//mode – GL_TRIANGLES etc

//first - index of first vertex to be 

//drawn 

//count - number of vertices to be used.



Drawing with VBOs

//In our example we have data for 2 

//triangles, so 6 vertices

//and we are starting at the 

//vertex at index 0

gl.glDrawArrays(GL2.GL_TRIANGLES,0,6);

//This would just draw the second triangle 

gl.glDrawArrays(GL2.GL_TRIANGLES,3,6);



Indexed Drawing

// Draw something using indexed data 

gl.glDrawElements(int mode, int count,     

int type, long offset);

//mode – GL_TRIANGLES etc

//count - number of indices to be used.

//type – type of index array – should be 

//unsigned and smallest type possible.

//offset – in bytes!



Indexed Drawing

//Suppose we want to use indexes to 

//access our data

short indexes[] = {0,1,5,3,4,2};

ShortBuffer indexedData = 

Buffers.newDirectShortBuffer(indexes);

//Set up another buffer for //the 

indexes

gl.glBindBuffer(GL2.GL_ELEMENT_ARRAY_BUF

FER, bufferIDs[1]);



Indexed Drawing

//load index data

gl.glBufferData(

GL2.GL_ELEMENT_ARRAY_BUFFER,           

indexes.length *Short.BYTES,

indexData,            

GL2.GL_STATIC_DRAW);

//draw the data

gl.glDrawElements(GL2.GL_TRIANGLES, 6, 

GL2.GL_UNSIGNED_SHORT, 0); 



Updating a VBO

• Copy new data into the bound VBO with

gl.glBufferData() or 

glBufferSubData()

• map the buffer object into client's 

memory, so that client can update data 

with the pointer to the mapped buffer

glMapBuffer()



Drawing Multiple 

Objects
Must make many calls each time we draw 

each new shape.

glBindBuffer

glVertexPointer

glColorPointer

glNormalPointer

etc



Vertex Array Object 

(VAO)
Encapsulates vbo and vertex attribute 

states to rapidly switch between states 

using one openGL call. 

gl.glBindVertexArray(vaoIDs[0]);

First generate vao ids.

int vaoIDs[] = new int[2];

gl.glGenVertexArrays(2, vaoIDs,0);



Set up VAOs
//Assume vbos and vao ids have been set up.

gl.glBindVertexArray(vaoIds[0]);

gl.glBindBuffer(GL2.GL_ARRAY_BUFFER,vboIds[0]);

gl.glEnableClientState…

gl.glVertexPointer… //etc other calls

gl.glBindVertexArray(vaoIds[1]);

gl.glBindBuffer(GL2.GL_ARRAY_BUFFER,vboIds[1]);

gl.glEnableClientState..

gl.glVertexPointer

//etc other calls



VAO switching

//Once vaos have been set up

gl.glBindVertexArray(vaoIds[0]);

gl.glDrawArrays(GL2.GL_TRIANGLES,0,N);

gl.glBindVertexArray(vaoIds[1]);

gl.glDrawArrays(GL2.GL_TRIANGLES,0,M);

//Use no vao

gl.glBindVertexArray(0);



Deleting a VBOs and 

VAOs
To free VBOs and VAOs once you do not need 

them anymore.

gl.glDeleteBuffers(2,vboIds,0);

gl.glDeleteVertexArray(2,vaoIds,0);


