
COMP3421
Texturing

The graphics pipeline

Projection

transformation
Illumination

Clipping
Perspective

division
ViewportRasterisation

Texturing
Frame

buffer
Display

Hidden

surface

removal

Model-View Transform

Model

Transform

View

Transform

Model

User

Texturing

Textures are a way to add detail to our

models without requiring too many

polygons.

Textures are used to add:

• Colour

• Reflections

• Shadows

•Bumps

•Lighting effects

•etc...

Textures

A texture is basically a function that maps

texture coordinates to pixel values.

Texture coordinates are usually in the range

(0,1).

Textures

A texture is basically a function that maps

texture coordinates to pixel values.

Texture coordinates are usually in the range

(0,1).

texture coords

pixel

value

Textures
Textures are most commonly represented

by bitmaps

i.e. 2D image files

T(s,t) = pixel value

at (s,t)

These are called

texels

s

t

(0,0)

(1,1)

Procedural textures

It is also possible to write code to compute

the texture value at a point.

This can be good to generate materials like

marble or woodgrain.

Using Textures
1.Load or create textures

2.Turn on texturing

gl.glEnable(GL2.GL_TEXTURE_2D);

3.Set the current texture

gl.glBindTexture(GL2.GL_TEXTURE_2

D,texId);

4.Map texture co-ordinates to

vertices

Texture mapping

To add textures to surfaces in on our

model, we set texture coordinates for each

vertex.

(0,1)
(0.25,1)

(0.5,1)
(0.75,1)

(0,0) (0.25,0)

(0.5,0)(0.75,0)

(1,1)

(1,0)

Texture Co-ordinates

gl.glNormal3d(0,0,1);

gl.glTexCoord2d(0,0);

gl.glVertex3d(-5,-5,0);

gl.glTexCoord2d(1,0);

gl.glVertex3d(5,-5,0);

//etc

Exercise: Circle

gl.glTexCoord2d(0.5+0.5*Math.cos(theta),

0.5+0.5*Math.sin(theta));

s

t

(0,0)

(1,1)
x = cos(theta)

y = sin(theta)

Mapping a Cylinder

Cylinder: s is

an angle

coordinate, t

is a height

coordinate.

Model Texture

Mapping
We can assign texture coordinates to

vertices however we want. Complex

models often have weird flattened textures.

Texture Wrap
You can assign texture coordinates outside

the range [0,1] and set the texture wrap to

GL2.GL_REPEAT (default)

GL2.GL_MIRRORED_REPEAT

GL2.GL_CLAMP_TO_EDGE

GL2.GL_CLAMP_TO_BORDER

Texture WRAP
For example, setting to GL2.GL_REPEAT

in both s and t dimensions:

gl.glTexParameteri(

GL2.GL_TEXTURE_2D,

GL2.GL_TEXTURE_WRAP_S,

GL2.GL_REPEAT);

gl.glTexParameteri(

GL2.GL_TEXTURE_2D,

GL2.GL_TEXTURE_WRAP_T,

GL2.GL_REPEAT);

Repeating a Texture

For example this shows the use of texture
coordinates outside [0,1] that repeat the
texture, if the setting is GL_REPEAT

Textures and shading

How do textures interact with shading?

The simplest approach is to replace

illumination calculations with a texture look-

up.

This produces objects which are not

affected by lights or color.

Textures and shading

A more common solution is to use the

texture to modulate the ambient and diffuse

reflection coefficients:

We usually leave the specular term

unaffected because it is unusual for the

material colour to affect specular

reflections.

OpenGL

// to use without lighting

gl.glTexEnvf(GL2.GL_TEXTURE_ENV,

GL2.GL_TEXTURE_ENV_MODE,

GL2.GL_REPLACE);

// to use with lighting

gl.glTexEnvf(GL2.GL_TEXTURE_ENV,

GL2.GL_TEXTURE_ENV_MODE,

GL2.GL_MODULATE);

Specular Highlights

// to make specular highlights

// be unaffected by the

// texture set

gl.glLightModeli(

GL2.GL_LIGHT_MODEL_COLOR_CONTROL,

GL2.GL_SEPARATE_SPECULAR_COLOR);

Loading textures in

JOGL
int nTex = 1;

int[] textures = new int[nTex];

//get texture id – release when finished

gl.glGenTextures(nTex, textures, 0);

// Use this texture – set current

texture

gl.glBindTexture(

GL.GL_TEXTURE_2D, textures[0]);

Loading textures in

JOGL
// Loading data from a file –

// make sure width and height of

// file are a power of 2

// glp = GLProfile

GLProfile glp =

GLProfile.getDefault();

TextureData data =

TextureIO.newTextureData(

glp, file, false, "png");

Loading textures in

JOGL
// Setting data to current texture

gl.glTexImage2D(

GL2.GL_TEXTURE_2D,

0,// level of detail: 0 = base

data.getInternalFormat(),

data.getWidth(),

data.getHeight(),

0, // border (must be 0)

data.getPixelFormat(),

data.getPixelType(),

data.getBuffer());

Texture mapping

When we rasterise an image, we colour

each pixel in a polygon by interpolating the

texture coordinates of its vertices.

Standard bilinear interpolation does not

work because it fails to take into account

foreshortening effects in tilted polygons.

Luckily this is done by OpenGL for us

Foreshortening

Equally spaced pixels

in screen space

Unequally spaced

in world space

perspective

camera

Rendering the

Texture
Linear vs. correct interpolation example:

Hyperbolic

interpolation
We want texture coordinates to interpolate

linearly in world space.

But the perspective projection distorts the

depth coordinate so that

linear interpolation ≠ linear interpolation

in screen space in world space

Hyperbolic interpolation fixes this.

Mathematical details in textbook if desired.

http://en.wikipedia.org/wiki/Not_equals_sign

OpenGL Hints
gl.glHint(GL_PERSPECTIVE_CORRECTION_HINT,

GL_NICEST)

gl.glHint(GL_PERSPECTIVE_CORRECTION_HINT,

GL_FASTEST)

If perspective-corrected parameter

interpolation is not efficiently supported by

the hinting GL_FASTEST can result in

simple linear interpolation

3D textures

We can also make 3D textures by adding

an extra texture coordinate.

Imagine a volume of space with different

colours at each point, e.g. a block of wood.

This eliminates weird seams and distortions

when a 2D texture is wrapped on a curve

3D surface.

Magnification

Normal bitmap textures have finite detail.

If we zoom in close we can see individual

texture pixels (texels).

If the camera is close enough to a textured

polygon multiple screen pixels may map to

the same texel.

This results in "pixelated" effects.

Magnification

Magnification

pixels

texels

The alignment is probably not exact.

Nearest Texel

pixels

texels

Find the nearest texel.

Bilinear Filtering

pixels

texels

Find the nearest four texels and use

bilinear interpolation over texels

Bilinear Filtering

No filtering Filtering

Magnification

Filtering
//bilinear filtering

gl.glTexParameteri(

GL.GL_TEXTURE_2D,

GL.GL_TEXTURE_MAG_FILTER,

GL.GL_LINEAR);

// no bilinear filtering

gl.glTexParameteri(

GL.GL_TEXTURE_2D,

GL.GL_TEXTURE_MAG_FILTER,

GL.GL_NEAREST);

Minification

Problems also occur when we zoom out too

far from a texture.

We can have more than one texel mapping

to a pixel.

If image pixels line up with regularities in

the texture, strange artefacts appear in the

output such as moire patterns or

shimmering in an animation

Minification

one pixel

texels

Again, the alignment is not exact.

Minification

Aliasing

This effect is called aliasing. It occurs when

samples are taken from an image at a

lower resolution than repeating detail in the

image.

texels

Aliasing

This effect is called aliasing. It occurs when

samples are taken from an image at a

lower resolution than repeating detail in the

image.

pixels

Aliasing

This effect is called aliasing. It occurs when

samples are taken from an image at a

lower resolution than repeating detail in the

image.

samples

Aliasing

This effect is called aliasing. It occurs when

samples are taken from an image at a

lower resolution than repeating detail in the

image.

result

Filtering

The problem is that one screen pixel

overlaps multiple texels but is taking its

value from only one of those texels.

A better approach is to average the texels

that contribute to that pixel.

Doing this on the fly is expensive.

MIP mapping

Mipmaps are precomputed low-res versions

of a texture.

Starting with a 512x512 texture we

compute and store 256x256, 128x128,

64x64, 32x32, 16x16, 8x8, 4x4, 2x2 and

1x1 versions.

This takes total

memory = 4/3 original.

Using mipmaps

The simplest approach is to use the next

smallest mipmap for the required

resolution.

E.g. To render a 40x40 pixel image, use the

32x32 pixel mipmap and magnify using

magnification filter

Trilinear filtering

A more costly approach is trilinear filtering:

• Use bilinear filtering to compute pixel

values based on the next highest and

the next lowest mipmap resolutions.

• Interpolate between these values

depending on the desired resolution.

Minification Filtering

//bilinear filtering with no mipmaps

gl.glTexParameteri(

GL.GL_TEXTURE_2D,

GL.GL_TEXTURE_MIN_FILTER,

GL.GL_LINEAR);

// no bilinear filtering with no

mipmaps

gl.glTexParameteri(

GL.GL_TEXTURE_2D,

GL.GL_TEXTURE_MIN_FILTER,

GL.GL_NEAREST);

Generating Mip-Maps

//get opengl to auto-generate

//mip-maps.

gl.glGenerateMipmap(GL2.GL_TEXTURE_2D);

// Must make sure you set the

// appropriate min filters

// once you have done this

MipMap Minification

Filtering
// use nearest mipmap

gl.glTexParameteri(

GL.GL_TEXTURE_2D,

GL.GL_TEXTURE_MIN_FILTER,

GL.GL_NEAREST_MIPMAP_NEAREST);

// use trilinear filtering

gl.glTexParameteri(

GL.GL_TEXTURE_2D,

GL.GL_TEXTURE_MIN_FILTER,

GL.GL_LINEAR_MIPMAP_LINEAR);

Aniso Filtering
If a polygon is on an oblique angle away

from the camera, then minification may

occur much more strongly in one dimension

than the other.

Aniso filtering

Anisotropic filtering is filtering which treats

the two axes independently.

float fLargest[] = new float[1];

gl.glGetFloatv(GL.GL_MAX_TEXTURE_MAX_ANIS

OTROPY_EXT, fLargest,0);

gl.glTexParameterf(GL.GL_TEXTURE_2D,

GL.GL_TEXTURE_MAX_ANISOTROPY_EXT,

fLargest[0]);

Aniso Filtering

RIP Mapping
RIP mapping is an extension of MIP

mapping which down-samples each axis

and is an approach to anisotropic filtering

So a 256x256 image has copies at:

256x128, 256x64, 256x32, 256x16, ...,

128x256, 128x128, 128x64,

64x256, 64x128, etc.

RIP Mapping

Limitations of RIP Mapping:

• Does not handle diagonal anisotropy.

• More memory required for RIP maps

(4 times as much).

• Not implemented in OpenGL

Multi-texturing
Can use more than one texture on the

same fragment.

gl.glActiveTexture(GL2.GL_TEXTURE0);

gl.glBindTexture(GL2.GL_TEXTURE_2D, texId1);

gl.glActiveTexture(GL2.GL_TEXTURE1);

gl.glBindTexture(GL2.GL_TEXTURE_2D, texId2);

gl.glTexEnvi(GL2.GL_TEXTURE_ENV,

GL2.GL_TEXTURE_ENV_MODE, GL2.GL_COMBINE);

Multi-texturing

GL_COMBINE, instead of default GL_REPLACE,

indicates that the first texture unit combines with

the zeroth by application of a texture combiner

function.

An example texture combiner function is

gl.glTexEnvi(GL TEXTURE ENV, GL COMBINE RGB,

GL INTERPOLATE);

//Uses Arg0 * Arg2 + Arg1 * (1-Arg2)

//See code for setting up the Arg0,Arg1,Arg2 values

Multi-texturing
Need to define different sets of texture

coordinates

gl.glMultiTexCoord2d(GL2.GL_TEXTURE0,

0.5, 1.0);

gl.glMultiTexCoord2d(GL2.GL_TEXTURE1,

0.5, 1.0);

gl.glVertex3d(….);

Textures and

Shaders
Vertex Shader

Simply pass through the texture coords

to the fragment shader (they will be

interpolated).

out vec2 texCoord;

void main(void){

//gl_MultiTexCoord0 has texture coords

texCoord = vec2(gl_MultiTexCoord0);

}

Textures and

Shaders
Fragment Shader

//passed in by vertex shader

in vec2 texCoord;

//texture variable passed in by jogl program

uniform sampler2D texUnit1;

//This would implement replace mode

gl_FragColor = texture(texUnit1,texCoord);

Textures and

Shaders
Fragment Shader

//For modulate with simple coloured vertices

gl_FragColor = texture(texUnit1,texCoord) *

gl_Color;

//For modulate with separate specular with

//lighting

gl_FragColor =

texture(texUnit1,texCoord) * (emissive +

ambient + diffuse) + specular

Textures and

Shaders
//In your jogl program, link texture variables

texUnitLoc =

gl.glGetUniformLocation(shaderprog,"texUnit1");

// By default unless we are using mult-texturing

// we always bind to texture0

gl.glUniform1i(texUnitLoc , 0);

Exercises

How can we modify our multi-texturing

example to use shaders?

How can we modify our texturing example

to use VBOs instead of immediate mode?

Rendering to a

texture
A common trick is to set up a camera in a

scene, render the scene into an offscreen

buffer, then copy the image into a texture to

use as part of another scene.

E.g. Implementing a security camera in a

game.

//In openGL you can use

gl.glCopyTexImage2D(…);

Reflection

To do better quality reflections we need to

compute where the reflected light is coming

from in the scene.

Eye

Reflective

object

Object seen

Reflection mapping
Doing this in general is expensive, but we

can do a reasonable approximation with

textures:

• Generate a cube that encloses the

reflective object.

• Place a camera at the centre of the

cube and render the outside world

onto the faces of the cube.

• Use this image to texture the object

Reflection mapping

Reflective

object

Reflection mapping

Cube

Reflection mapping

Camera

Render scene

onto cube

Reflection mapping

Camera

Repeat for

each face

Reflection mapping

Camera

Repeat for

each face

Reflection mapping

Camera

Repeat for

each face

Reflection mapping

To apply the reflection-mapped texture to

the object we need to calculate appropriate

texture coordinates.

We do this by tracing a ray from the

camera, reflecting it off the object and then

calculating where it intersects the cube.

Reflection mapping

CubeEye View

vector

normal

point

Reflection mapping

Pros:

• Produces reasonably convincing

polished metal surfaces and mirrors

Reflection mapping

Cons:

• Expensive: Requires 6 additional

render passes per object

• Angles to near objects are wrong.

• Does not handle self-reflections or

recursive reflections.

OpenGL
OpenGL has built in support for fast

approximate reflection mapping (cube

mapping).

http://www.nvidia.com/object/cube_map_og

l_tutorial.html

OpenGL also has sphere mapping support,

although this usually produces more

distortion and is not as effective as cube

mapping.

http://www.nvidia.com/object/cube_map_ogl_tutorial.html

Shadows

Our lighting model does not currently

produce shadows.

We need to take into account whether the

light source is occluded by another object.

Shadow buffering
One solution is to keep a shadow buffer for

each light source.

The shadow buffer is like the depth buffer, it

records the distance from the light source

to the closest object in each direction.

Shadow buffer
Shadow rendering is usually done in multiple

passes:

1. Render the scene from the light's

viewpoint capturing only z-info in shadow

buffer (color buffer turned off)

2. Render the scene from camera’s

viewpoint in ambient light first

3. Render the scene from camera’s point of

view for each light and add the pixel

values for lit objects

Shadow buffer
When rendering a point P:

• Project the point into the light's clip

space.

• Calculate the index (i,j) for P in the

shadow buffer

• Calculate the pseudodepth d relative

to the light source

• If shadow[i,j] < d then P is in the

shadow

Shadow buffer
Pros:

• Provides realistic shadows

• No knowledge or processing of the

scene geometry is required

Shadow buffer
Cons:

• More computation

• Shadow quality is limited by precision of

shadow buffer. This may cause some aliasing

artefacts.

• Shadow edges are hard.

• The scene geometry must be rendered once

per light in order to generate the shadow map

for a spotlight, and more times for an

omnidirectional point light.

OpenGL

http://www.paulsprojects.net/tutorials/smt/s

mt.html

http://www.paulsprojects.net/tutorials/smt/smt.html

Light Mapping

If our light sources and large portions of the

geometry are static then we can

precompute the lighting equations and

store the results in textures called light

maps.

This process is known as baked lighting.

Light Mapping

Pros:

• Sophisticated lighting effects can be

computed at compile time, where

speed is less of an issue.

Light mapping

Cons:

• Memory and loading times for many

individual light maps.

• Not suitable for dynamic lights or

moving objects.

• Potential aliasing effects depending

on the resolution of the light maps.

Normal mapping

When we interpolate normals in a Phong

shader we are assuming that the surface of

the polygon is smoothly curved.

What if the surface is actually rough with

many small deformities?

Putting a rough texture on a smooth flat

surface looks wrong.

Normal mapping

One solution would be to increase the

number of polygons to represent all the

deformities, but this is computationally

unfeasible for most applications.

Instead we use textures called normal

maps to simulate minor perturbations in the

surface normal.

Normal maps

Rather than arrays of colours, normal maps

can be considered as arrays of vectors.

These vectors are added to the interpolated

normals to give the appearance of

roughness.

Vertex normals

Normal maps

Rather than arrays of colours, normal maps

can be considered as arrays of vectors.

These vectors are added to the interpolated

normals to give the appearance of

roughness.

Interpolated

fragment normals

Normal maps

Rather than arrays of colours, normal maps

can be considered as arrays of vectors.

These vectors are added to the interpolated

normals to give the appearance of

roughness.

Normal map

Normal maps

Rather than arrays of colours, normal maps

can be considered as arrays of vectors.

These vectors are added to the interpolated

normals to give the appearance of

roughness.
Perturbed

normals

Normal maps

Pros:

• Provide the illusion of surface texture

Cons:

• Does not affect silhouette

• Does not affect occlusion calculation

Normal Mapping

OpenGL

http://www.opengl-tutorial.org/intermediate-

tutorials/tutorial-13-normal-mapping/

http://www.terathon.com/code/tangent.html

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/

