
3. Branching Algorithms

COMP6741: Parameterized and Exact Computation

Serge Gaspers12

1School of Computer Science and Engineering, UNSW Australia
2Optimisation Resarch Group, NICTA

Semester 2, 2015

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 1 / 58

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely
State Based Measures

3 Exercise on Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 2 / 58

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely
State Based Measures

3 Exercise on Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 3 / 58

Recall: Maximal Independent Sets

A vertex set S ⊆ V of a graph G = (V,E) is an independent set in G if there
is no edge uv ∈ E with u, v ∈ S.

An independent set is maximal if it is not a subset of any other independent
set.

Examples:

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 4 / 58

Enumeration problem: Enumerate all maximal independent
sets

Enum-MIS
Input: graph G
Output: all maximal independent sets of G

a b

c d

Maximal independent sets: {a, d}, {b}, {c}

Note: Let v be a vertex of a graph G. Every maximal independent set contains a
vertex from NG[v].

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 5 / 58

Enumeration problem: Enumerate all maximal independent
sets

Enum-MIS
Input: graph G
Output: all maximal independent sets of G

a b

c d

Maximal independent sets: {a, d}, {b}, {c}

Note: Let v be a vertex of a graph G. Every maximal independent set contains a
vertex from NG[v].

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 5 / 58

Branching Algorithm for Enum-MIS

Algorithm enum-mis(G, I)
Input : A graph G = (V,E), an independent set I of G.
Output: All maximal independent sets of G that are supersets of I.

1 G′ ← G−NG[I]
2 if V (G′) = ∅ then // G′ has no vertex

3 Output I

4 else
5 Select v ∈ V (G′) such that dG′(v) = δ(G′) // v has min degree in G′

6 Run enum-mis(G, I ∪ {u}) for each u ∈ NG′ [v]

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 6 / 58

Running Time Analysis

Define L(n) = largest number of leaves in any search tree of enum-mis for an
instance with |V (G′)| ≤ n.

Note: L(n) is non-decreasing.

Suppose dG′(v) = d generates a maximum number of leaves. Then,

L(n) ≤ (d+ 1) · L(n− (d+ 1)) = O
(

(d+ 1)n/(d+1)
)

For s > 0, the function f(s) = s1/s has its maximum value for s = e and for
integer s the maximum value of f(s) is when s = 3.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 7 / 58

Running Time Analysis

Define L(n) = largest number of leaves in any search tree of enum-mis for an
instance with |V (G′)| ≤ n.

Note: L(n) is non-decreasing.

Suppose dG′(v) = d generates a maximum number of leaves. Then,

L(n) ≤ (d+ 1) · L(n− (d+ 1)) = O
(

(d+ 1)n/(d+1)
)

For s > 0, the function f(s) = s1/s has its maximum value for s = e and for
integer s the maximum value of f(s) is when s = 3.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 7 / 58

Running Time Analysis II

Since the height of the search trees is ≤ |V (G′)|, we obtain:

Theorem 1

Algorithm enum-mis has running time O∗(3n/3) ⊆ O(1.4423n), where n = |V |.

Corollary 2

A graph on n vertices has O(3n/3) maximal independent sets.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 8 / 58

Constraints Based Analysis

Suppose L(n) = 2α·n, α > 0.

We constrain for each d ≥ 0, that

2α·n ≥ (d+ 1) · 2α·(n−(d+1)),

or, equivalently,

1 ≥ (d+ 1) · 2α·(−(d+1)),

and, since we would like to prove a small running time bound, we minimize α
subject to these constraints.

This amounts to solving a convex program, which gives α = (1/3) · log2 3 and
L(n) = 2(n/3)·log2 3 = 3n/3.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 9 / 58

Constraints Based Analysis

Suppose L(n) = 2α·n, α > 0.

We constrain for each d ≥ 0, that

2α·n ≥ (d+ 1) · 2α·(n−(d+1)),

or, equivalently,

1 ≥ (d+ 1) · 2α·(−(d+1)),

and, since we would like to prove a small running time bound, we minimize α
subject to these constraints.

This amounts to solving a convex program, which gives α = (1/3) · log2 3 and
L(n) = 2(n/3)·log2 3 = 3n/3.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 9 / 58

Constraints Based Analysis

Suppose L(n) = 2α·n, α > 0.

We constrain for each d ≥ 0, that

2α·n ≥ (d+ 1) · 2α·(n−(d+1)),

or, equivalently,

1 ≥ (d+ 1) · 2α·(−(d+1)),

and, since we would like to prove a small running time bound, we minimize α
subject to these constraints.

This amounts to solving a convex program, which gives α = (1/3) · log2 3 and
L(n) = 2(n/3)·log2 3 = 3n/3.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 9 / 58

Running Time Lower Bound

· · ·

Theorem 3

There is an infinite family of graphs with Ω(3n/3) maximal independent sets.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 10 / 58

Branching Algorithm

Branching Algorithm

Selection: Select a local configuration of the problem instance

Recursion: Recursively solve subinstances

Combination: Compute an optimal solution of the instance based on the
optimal solutions of the subinstances

Simplification rule: 1 recursive call

Branching rule: ≥ 2 recursive calls

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 11 / 58

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely
State Based Measures

3 Exercise on Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 12 / 58

Maximum Independent Set

Maximum Independent Set
Input: graph G
Output: A largest independent set of G.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 13 / 58

Exercise

Suppose there exists a O∗(1.2n) time algorithm, which, given a graph G on n
vertices, computes the size of a largest independent set of G.
Design an algorithm, which, given a graph G, finds a largest independent set of G
in time O∗(1.2n).

Solution Idea

Compute k, the size of a largest independent set of G

Find a vertex v belonging to an independent set of size k

We can do this by going through each vertex u of G, and checking whether
G−NG[u] has an independent set of size k − 1

Recurse on (G−NG[v], k − 1)

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 14 / 58

Exercise

Suppose there exists a O∗(1.2n) time algorithm, which, given a graph G on n
vertices, computes the size of a largest independent set of G.
Design an algorithm, which, given a graph G, finds a largest independent set of G
in time O∗(1.2n).

Solution Idea

Compute k, the size of a largest independent set of G

Find a vertex v belonging to an independent set of size k

We can do this by going through each vertex u of G, and checking whether
G−NG[u] has an independent set of size k − 1

Recurse on (G−NG[v], k − 1)

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 14 / 58

Branching Algorithm for Maximum Independent Set

Algorithm mis(G)
Input : A graph G = (V,E).
Output: The size of a maximum i.s. of G.

1 if ∆(G) ≤ 2 then // G has max degree ≤ 2
2 return the size of a maximum i.s. of G in polynomial time

3 else if ∃v ∈ V : d(v) = 1 then // v has degree 1
4 return 1 + mis(G−N [v])

5 else if G is not connected then
6 Let G1 be a connected component of G
7 return mis(G1) + mis(G− V (G1))

8 else
9 Select v ∈ V s.t. d(v) = ∆(G) // v has max degree

10 return max (1 + mis(G−N [v]),mis(G− v))

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 15 / 58

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely
State Based Measures

3 Exercise on Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 16 / 58

Simple Analysis I

Lemma 4 (Simple Analysis Lemma)

Let

A be a branching algorithm

α > 0, c ≥ 0 be constants

such that on input I, A calls itself recursively on instances I1, . . . , Ik, but, besides
the recursive calls, uses time O(|I|c), such that

(∀i : 1 ≤ i ≤ k) |Ii| ≤ |I| − 1, and (1)

2α·|I1| + · · ·+ 2α·|Ik| ≤ 2α·|I|. (2)

Then A solves any instance I in time O(|I|c+1) · 2α·|I|.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 17 / 58

Simple Analysis II

Proof.

By induction on |I|.
W.l.o.g., replace the hypotheses’ O statement with a simple inequality, and for the
base case assume that the algorithm returns the solution to an empty instance in
time 1 ≤ |I|c+12α·|I|.
Suppose the lemma holds for all instances of size at most |I| − 1 ≥ 0, then the
running time of algorithm A on instance I is

TA(I) ≤ |I|c +

k∑
i=1

TA(Ii) (by definition)

≤ |I|c +
∑
|Ii|c+12α·|Ii| (by the inductive hypothesis)

≤ |I|c + (|I| − 1)c+1
∑

2α·|Ii| (by (1))

≤ |I|c + (|I| − 1)c+12α·|I| (by (2))

≤ |I|c+12α·|I|.

The final inequality uses that α · |I| > 0 and holds for any c ≥ 0.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 18 / 58

Simple Analysis for mis

At each node of the search tree: O(n2)

G disconnected:

(∀s : 1 ≤ s ≤ n− 1) 2α·s + 2α·(n−s) ≤ 2α·n. (3)

always satisfied by convexity of the function 2x

Branch on vertex of degree d ≥ 3

(∀d : 3 ≤ d ≤ n− 1) 2α·(n−1) + 2α·(n−1−d) ≤ 2αn. (4)

Dividing all these terms by 2αn, the constraints become

2−α + 2α·(−1−d) ≤ 1. (5)

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 19 / 58

Compute optimum α

The minimum α satisfying the constraints is obtained by solving a convex
mathematical program minimizing α subject to the constraints (the constraint for
d = 3 is sufficient as all other constraints are weaker).

Alternatively, set x := 2α, compute the unique positive real root of each of the
characteristic polynomials

cd(x) := x−1 + x−1−d − 1,

and take the maximum of these roots [Kullmann ’99].

d x α
3 1.3803 0.4650
4 1.3248 0.4057
5 1.2852 0.3620
6 1.2555 0.3282
7 1.2321 0.3011

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 20 / 58

Compute optimum α

The minimum α satisfying the constraints is obtained by solving a convex
mathematical program minimizing α subject to the constraints (the constraint for
d = 3 is sufficient as all other constraints are weaker).

Alternatively, set x := 2α, compute the unique positive real root of each of the
characteristic polynomials

cd(x) := x−1 + x−1−d − 1,

and take the maximum of these roots [Kullmann ’99].

d x α
3 1.3803 0.4650
4 1.3248 0.4057
5 1.2852 0.3620
6 1.2555 0.3282
7 1.2321 0.3011

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 20 / 58

Simple Analysis: Result

use the Simple Analysis Lemma with c = 2 and α = 0.464959

running time of Algorithm mis upper bounded by
O(n3) · 20.464959·n = O(20.4650·n) or O(1.3803n)

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 21 / 58

Lower bound

v1 v2 v3 v4 v5 v6 vn−1 vn

T (n) = T (n− 5) + T (n− 3)

for this graph, P 2
n , the worst case running time is 1.1938 . . .n · poly(n)

Run time of algo mis is Ω(1.1938n)

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 22 / 58

Worst-case running time — a mystery

Mystery

What is the worst-case running time of Algorithm mis?

lower bound Ω(1.1938n)

upper bound O(1.3803n)

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 23 / 58

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely
State Based Measures

3 Exercise on Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 24 / 58

Search Trees

Denote µ(I) := α · |I|.

µ(I)

µ(I1)

.

µ(I2)

.

. . . µ(Ik)

.

Example: execution of mis on a P 2
n

n

n− 3

n− 6 n− 8

n− 5

n− 8 n− 10

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 25 / 58

Search Trees

Denote µ(I) := α · |I|.

µ(I)

µ(I1)

.

µ(I2)

.

. . . µ(Ik)

.

Example: execution of mis on a P 2
n

n

n− 3

n− 6 n− 8

n− 5

n− 8 n− 10

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 25 / 58

Branching number: Definition

Consider a constraint

2µ(I)−a1 + · · ·+ 2µ(I)−ak ≤ 2µ(I).

Its branching number is

2−a1 + · · ·+ 2−ak ,

and is denoted by

(a1, . . . , ak) .

Clearly, any constraint with branching number at most 1 is satisfied.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 26 / 58

Branching numbers: Properties

Dominance For any ai, bi such that ai ≥ bi for all i, 1 ≤ i ≤ k,

(a1, . . . , ak) ≤ (b1, . . . , bk) ,

as 2−a1 + · · ·+ 2−ak ≤ 2−b1 + · · ·+ 2−bk .
In particular, for any a, b > 0,

either (a, a) ≤ (a, b) or (b, b) ≤ (a, b) .

Balance If 0 < a ≤ b, then for any ε such that 0 ≤ ε ≤ a,

(a, b) ≤ (a− ε, b+ ε)

by convexity of 2x.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 27 / 58

Exercises

1. Let A be a branching algorithm, such that, on any input of size at most n its
search tree has height at most n and for the number of leaves L(n), we have

L(n) ≤ 3 · L(n− 2)

Upper bound the running time of A, assuming it spends only polynomial time at
each node of the search tree.

2. Same question, except that

L(n) ≤ max


2 · L(n− 3)

L(n− 2) + L(n− 4)

2 · L(n− 2)

L(n− 1)

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 28 / 58

Exercises

1. Let A be a branching algorithm, such that, on any input of size at most n its
search tree has height at most n and for the number of leaves L(n), we have

L(n) ≤ 3 · L(n− 2)

Upper bound the running time of A, assuming it spends only polynomial time at
each node of the search tree.

2. Same question, except that

L(n) ≤ max


2 · L(n− 3)

L(n− 2) + L(n− 4)

2 · L(n− 2)

L(n− 1)

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 28 / 58

Exercises

1. Let A be a branching algorithm, such that, on any input of size at most n its
search tree has height at most n and for the number of leaves L(n), we have

L(n) ≤ 3 · L(n− 2)

Upper bound the running time of A, assuming it spends only polynomial time at
each node of the search tree.

2. Same question, except that

L(n) ≤ max


2 · L(n− 3)

L(n− 2) + L(n− 4)

2 · L(n− 2)

L(n− 1)

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 28 / 58

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely
State Based Measures

3 Exercise on Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 29 / 58

Measure based analysis

Goal, idea

capture more structural changes when branching into subinstances

Means

potential-function method, a.k.a., Measure & Conquer

Example: Algorithm mis

advantage when degrees of vertices decrease

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 30 / 58

Multivariate recurrences

Model running time of mis by

T (n1, n2, . . .), short T
(
{ni}i≥1

)
,

where ni := |{v ∈ V : d(v) = i}|.
G− v: neighbors’ degrees decrease

G−N [v]: a vertex in N2[v] has its degree decreased

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 31 / 58

Multivariate recurrences (2)

We obtain the following recurrence where the maximum ranges over all
d ≥ 3, all pi, 2 ≤ i ≤ d such that

∑d
i=2 pi = d and all k such that 2 ≤ k ≤ d:

T
(
{ni}i≥1

)
= max
d,p2,...,pd,k


T
({
ni − pi + pi+1 − [d = i]

}
i≥1

)
+T
({
ni − pi − [d = i]− [k = i]

+ [k = i+ 1]
}
i≥1

) (6)

where the Iverson bracket [F] =

{
1 if F true

0 otherwise

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 32 / 58

Solve multivariate recurrence

restrict to max degree 5

[Eppstein 2004]: there exists a set of weights w1, . . . , w5 ∈ R+ such that a
solution to (6) is within a polynomial factor of a solution to the

corresponding univariate weighted model (T (
∑5
i=1 ωini) = max . . .).

Definition 5
A measure µ for a problem P is a function from the set of all instances for P to
the set of non negative reals

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 33 / 58

From recurrences ...

µ(G) :=

5∑
i=1

wini

(i ≥ 1) wi ≥ 0

(i ≥ 2) wi ≥ wi−1
(∀d : 2 ≤ d ≤ 5) hd := min

2≤i≤d
{wi − wi−1}

By [Eppstein 2004], there exist weights wi such that a solution to (6) corresponds
to a solution to the following recurrence, where the maximum ranges over all
d, 3 ≤ d ≤ 5, and all pi, 2 ≤ i ≤ d, such that

∑d
i=2 pi = d,

T (µ(G)) = max
d,p2,...,pd,k

T
(
µ(G)− wd −

∑d
i=2 pi · (wi − wi−1)

)
+T

(
µ(G)− wd −

∑d
i=2 pi · wi − hd

)
.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 34 / 58

... to constraints

T (µ(G)) ≥ T
(
µ(G)− wd −

∑d
i=2 pi · (wi − wi−1)

)
+ T

(
µ(G)− wd −

∑d
i=2 pi · wi − hd

)
for all d, 3 ≤ d ≤ 5, and all pi, 2 ≤ i ≤ d, such that

∑d
i=2 pi = d.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 35 / 58

Measure Based Analysis

Lemma 6 (Measure Analysis Lemma)

Let

A be a branching algorithm

c ≥ 0 be a constant, and

µ(·), η(·) be two measures for the instances of A,

such that on input I, A calls itself recursively on instances I1, . . . , Ik, but, besides
the recursive calls, uses time O(|I|c), such that

(∀i) η(Ii) ≤ η(I)− 1, and (7)

2µ(I1) + . . .+ 2µ(Ik) ≤ 2µ(I). (8)

Then A solves any instance I in time O(η(I)c+1) · 2µ(I).

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 36 / 58

Applying the lemma

wi ≥ 0

wi ≥ wi−1
2µ(G) ≥ 2µ(G)−wd−

∑d
i=2 pi·(wi−wi−1) + 2µ(G)−wd−

∑d
i=2 pi·wi−hd

⇔
1 ≥ 2−wd−

∑d
i=2 pi·(wi−wi−1) + 2−wd−

∑d
i=2 pi·wi−hd

i wi hi
1 0 0
2 0.25 0.25
3 0.35 0.10
4 0.38 0.03
5 0.40 0.02

These values for wi satisfy all the constraints and µ(G) ≤ 2n/5 for any graph of
max degree ≤ 5.
Taking c = 2 and η(G) = n, the Measure Analysis Lemma shows that mis has run
time O(n3)22n/5 = O(1.3196n) on graphs of max degree ≤ 5.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 37 / 58

Applying the lemma

wi ≥ 0

wi ≥ wi−1
2µ(G) ≥ 2µ(G)−wd−

∑d
i=2 pi·(wi−wi−1) + 2µ(G)−wd−

∑d
i=2 pi·wi−hd

⇔
1 ≥ 2−wd−

∑d
i=2 pi·(wi−wi−1) + 2−wd−

∑d
i=2 pi·wi−hd

i wi hi
1 0 0
2 0.25 0.25
3 0.35 0.10
4 0.38 0.03
5 0.40 0.02

These values for wi satisfy all the constraints and µ(G) ≤ 2n/5 for any graph of
max degree ≤ 5.
Taking c = 2 and η(G) = n, the Measure Analysis Lemma shows that mis has run
time O(n3)22n/5 = O(1.3196n) on graphs of max degree ≤ 5.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 37 / 58

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely
State Based Measures

3 Exercise on Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 38 / 58

Compute optimal weights

By convex programming [Gaspers, Sorkin 2009]

All constraints are already convex, except conditions for hd

(∀d : 2 ≤ d ≤ 5) hd := min
2≤i≤d

{wi − wi−1}

�

(∀i, d : 2 ≤ i ≤ d ≤ 5) hd ≤ wi − wi−1.

Use existing convex programming solvers to find optimum weights.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 39 / 58

convex program in AMPL

param maxd integer >= 3;
set DEGREES := 0..maxd;
var W {DEGREES} >= 0; # weight for vertices according to their degrees
var g {DEGREES} >= 0; # weight for degree reductions from deg i
var h {DEGREES} >= 0; # weight for degree reductions from deg \le i
var Wmax; # maximum weight of W[d]

minimize Obj: Wmax; # minimize the maximum weight

subject to MaxWeight {d in DEGREES}:
Wmax >= W[d];

subject to gNotation {d in DEGREES : 2 <= d}:
g[d] <= W[d]-W[d-1];

subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
h[d] <= W[i]-W[i-1];

subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
2^(-W[3] -p2*g[2] -p3*g[3]) + 2^(-W[3] -p2*W[2] -p3*W[3] -h[3]) <=1;

subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
2^(-W[4] - p2*g[2] - p3*g[3] - p4*g[4])

+ 2^(-W[4] - p2*W[2] - p3*W[3] - p4*W[4] - h[4]) <=1;
subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 :

p2+p3+p4+p5=5}:
2^(-W[5] - p2*g[2] - p3*g[3] - p4*g[4] - p5*g[5])

+ 2^(-W[5] - p2*W[2] - p3*W[3] - p4*W[4] - p5*W[5] - h[5]) <=1;

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 40 / 58

Optimal weights

i wi hi
1 0 0
2 0.206018 0.206018
3 0.324109 0.118091
4 0.356007 0.031898
5 0.358044 0.002037

use the Measure Analysis Lemma with µ(G) =
∑5
i=1 wini ≤ 0.358044 · n,

c = 2, and η(G) = n

mis has running time O(n3)20.358044·n = O(1.2817n)

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 41 / 58

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely
State Based Measures

3 Exercise on Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 42 / 58

Exponential time subroutines

Lemma 7 (Combine Analysis Lemma)

Let

A be a branching algorithm and B be an algorithm,

c ≥ 0 be a constant, and

µ(·), µ′(·), η(·) be three measures for the instances of A and B,

such that µ′(I) ≤ µ(I) for all instances I, and on input I, A either solves I by
invoking B with running time O(η(I)c+1) · 2µ′(I), or calls itself recursively on
instances I1, . . . , Ik, but, besides the recursive calls, uses time O(|I|c), such that

(∀i) η(Ii) ≤ η(I)− 1, and (9)

2µ(I1) + . . .+ 2µ(Ik) ≤ 2µ(I). (10)

Then A solves any instance I in time O(η(I)c+1) · 2µ(I).

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 43 / 58

Algorithm mis on general graphs

use the Combine Analysis Lemma with A = B = mis, c = 2,
µ(G) = 0.35805n, µ′(G) =

∑5
i=1 wini, and η(G) = n

for every instance G, µ′(G) ≤ µ(G) because ∀i, wi ≤ 0.35805

for each d ≥ 6,

(0.35805, (d+ 1) · 0.35805) ≤ 1

Thus, Algorithm mis has running time O(1.2817n) for graphs of arbitrary
degrees

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 44 / 58

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely
State Based Measures

3 Exercise on Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 45 / 58

Rare Configurations

Branching on a local configuration C does not influence overall running time
if C is selected only a constant number of times on the path from the root to
a leaf of any search tree corresponding to the execution of the algorithm

Can be proved formally by using measure

µ′(I) :=

{
µ(I) + c if C may be selected in the current subtree

µ(I) otherwise.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 46 / 58

Avoid branching on regular instances in mis

else
Select v ∈ V such that

(1) v has maximum degree, and
(2) among all vertices satisfying (1), v has a neighbor of

minimum degree
return max (1 + mis(G−N [v]),mis(G− v))

New measure:

µ′(G) = µ(G) +

5∑
d=3

[G has a d-regular subgraph] · Cd

where Cd, 3 ≤ d ≤ 5, are constants.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 47 / 58

Resulting Branching numbers

For each d, 3 ≤ d ≤ 5 and all pi, 2 ≤ i ≤ d such that
∑d
i=2 pi = d and pd 6= d,

(
wd +

d∑
i=2

pi · (wi − wi−1), wd +

d∑
i=2

pi · wi + hd

)
.

All these branching numbers are at most 1 with the optimal set of weights on the
next slide

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 48 / 58

Result

i wi hi
1 0 0
2 0.207137 0.207137
3 0.322203 0.115066
4 0.343587 0.021384
5 0.347974 0.004387

Thus, the modified Algorithm mis has running time O(20.3480·n) = O(1.2728n).

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 49 / 58

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely
State Based Measures

3 Exercise on Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 50 / 58

State based measures

“bad” branching always followed by “good” branchings

amortize over branching numbers

µ′(I) := µ(I) + Ψ(I),

where Ψ : I → R+ depends on global properties of the instance.

regular
not

regular

−R

+R

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 51 / 58

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely
State Based Measures

3 Exercise on Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 52 / 58

Exercise: Max 2-CSP

Max 2-CSP
Input: A graph G = (V,E) and a set S of score functions containing

a score function se : {0, 1}2 → N0 for each edge e ∈ E,

a score function sv : {0, 1} → N0 for each vertex v ∈ V , and

a score “function” s∅ : {0, 1}0 → N0 (which takes no
arguments and is just a constant convenient for bookkeeping).

Output: The maximum score s(φ) of an assignment φ : V → {0, 1}:

s(φ) := s∅ +
∑
v∈V

sv(φ(v)) +
∑
uv∈E

suv(φ(u), φ(v)).

1 Design simplification rules for vertices of degree ≤ 2.
2 Using the simple analysis, design and analyze an O∗(2m/4) time algorithm,

where m = |E|.
3 Use the measure µ := we ·m−

(∑
v∈V wdG(v)

)
to improve the analysis to

O∗(2m/5).

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 53 / 58

Solution sketch

Simplification rules

S0 If there is a vertex y with d(y) = 0, then set s∅ = s∅ + maxC∈{0,1} sy(C)
and delete y from G.

S1 If there is a vertex y with d(y) = 1, then denote N(y) = {x} and replace the
instance with (G′, S′) where G′ = (V ′, E′) = G− y and S′ is the restriction
of S to V ′ and E′ except that for all C ∈ {0, 1} we set

s′x(C) = sx(C) + max
D∈{0,1}

{sxy(C,D) + sy(D)}.

S2 If there is a vertex y with d(y) = 2, then denote N(y) = {x, z} and replace
the instance with (G′, S′) where
G′ = (V ′, E′) = (V − y, (E \ {xy, yz}) ∪ {xz}) and S′ is the restriction of S
to V ′ and E′, except that for C,D ∈ {0, 1} we set

s′xz(C,D) = sxz(C,D) + max
F∈{0,1}

{sxy(C,F) + syz(F,D) + sy(F)}

if there was already an edge xz, discarding the first term sxz(C,D) if there
was not.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 54 / 58

Solution sketch II

Branching rules

B Let y be a vertex of maximum degree. There is one subinstance (G′, sC) for
each color C ∈ {0, 1}, where G′ = (V ′, E′) = G− y and sC is the restriction
of s to V ′ and E′, except that we set

(sC)∅ = s∅ + sy(C),

and, for every neighbor x of y and every D ∈ {0, 1},

(sC)x(D) = sx(D) + sxy(D,C).

Branching on a vertex of degree ≥ 4 removes ≥ 4 edges from both
subinstances

Branching on a vertex of degree 3 removes ≥ 6 edges from both subinstances
since G is 3-regular.

The recurrence T (m) ≤ 2 · T (m− 4) solves to 2m/4

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 55 / 58

Solution sketch III

Using the measure

µ := we ·m+

(∑
v∈V

wdG(v)

)

we constrain that

wd ≤ 0 for all d ≥ 0 to ensure that µ ≤ wem
d · we/2 + wd ≥ 0 for all d ≥ 0 to ensure that µ(G) ≥ 0

−w0 ≤ 0 constraint for S0

−w2 − we ≤ 0 constraint for S2

1− wd − d · we − d · (wj − wj−1) ≤ 0

for all d, j ≥ 3.
Using we = 0.2, w0 = 0, w1 = −0.05, w2 = −0.2, w3 = −0.05, and wd = 0 for
d ≥ 4, all constraints are satisfied and µ(G) ≤ m/5 for each graph G.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 56 / 58

Outline

1 Introduction

2 Maximum Independent Set
Simple Analysis
Search Trees and Branching Numbers
Measure Based Analysis
Optimizing the measure
Exponential Time Subroutines
Structures that arise rarely
State Based Measures

3 Exercise on Max 2-CSP

4 Further Reading

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 57 / 58

Further Reading

Chapter 2, Branching in
Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer,
2010.

Chapter 6, Measure & Conquer in
Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer,
2010.

Chapter 2, Branching Algorithms in
Serge Gaspers. Exponential Time Algorithms: Structures, Measures, and
Bounds. VDM Verlag Dr. Mueller, 2010.

S. Gaspers (UNSW) Branching Algorithms Semester 2, 2015 58 / 58

	Introduction
	Maximum Independent Set
	Simple Analysis
	Search Trees and Branching Numbers
	Measure Based Analysis
	Optimizing the measure
	Exponential Time Subroutines
	Structures that arise rarely
	State Based Measures

	Exercise on Max 2-CSP
	Further Reading

