
9. Parameter Treewidth

COMP6741: Parameterized and Exact Computation

Serge Gaspers12

1School of Computer Science and Engineering, UNSW Australia
2Optimisation Resarch Group, NICTA

Semester 2, 2015

S. Gaspers (UNSW) Treewidth Semester 2, 2015 1 / 52



Outline

1 Algorithms for trees

2 Tree decompositions

3 Monadic Second Order Logic

4 Dynamic Programming over Tree Decompositions
Sat
CSP

5 Further Reading

S. Gaspers (UNSW) Treewidth Semester 2, 2015 2 / 52



Outline

1 Algorithms for trees

2 Tree decompositions

3 Monadic Second Order Logic

4 Dynamic Programming over Tree Decompositions
Sat
CSP

5 Further Reading

S. Gaspers (UNSW) Treewidth Semester 2, 2015 3 / 52



Exercise

Recall: An independent set of a graph G = (V,E) is a set of vertices S ⊆ V such
that G[S] has no edge.

#Independent Sets on Trees

Input: A tree T = (V,E)
Output: The number of independent sets of T .

Design a polynomial time algorithm for #Independent Sets on Trees
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Solution

Select an arbitrary root r of T

Bottom-up dynamic programming (starting at the leaves) to compute, for
each subtree Tx rooted at x the values

#in(x): the number of independent sets of Tx containing x, and
#out(x): the number of independent sets of Tx not containing x.

If x is a leaf, then #in(x) = #out(x) = 1

Otherwise,

#in(x) = Πy child of x #out(y) and

#out(x) = Πy child of x (#in(y) + #out(y))

The final result is #in(r) + #out(r)
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Exercise

Recall: A dominating set of a graph G = (V,E) is a set of vertices S ⊆ V such
that NG[S] = V .

#Dominating Sets on Trees

Input: A tree T = (V,E)
Output: The number of dominating sets of T .

Design a polynomial time algorithm for #Dominating Sets on Trees
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Solution

Select an arbitrary root r of T

Bottom-up dynamic programming (starting at the leaves) to compute, for
each subtree Tx rooted at x the values

#in(x): the number of dominating sets of Tx containing x,
#outDom(x): the number of dominating sets of Tx not containing x, and
#outNd(x): the number of vertex subsets of Tx dominating V (Tx) \ {x}.

If x is a leaf, then #in(x) = #outNd(x) = 1 and #outDom(x) = 0.

Otherwise,

#in(x) = Πy child of x (#in(y) + #outDom(y) + #outNd(y)),

#outDom(x) = Πy child of x (#in(y) + #outDom(y))

−Πy child of x #outDom(y)

#outNd(x) = Πy child of x #outDom(y)

The final result is #in(r) + #outDom(r)
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Algorithms using graph decompositions

how to parameterize (2)

Decompositions

• Idea: decompose the problem 
into subproblems, and 
combine solutions to 
subproblems to a global 
solution

• Parameter: overlap between 
subproblems

• Induced width or treewidth of 
constraints networks [Dechter, 
Pearl ’89]

• hypertree width [Gottlob, Leone, 
Scarchello ‘02]

15

Idea: decompose the problem into sub-
problems and combine solutions to sub-
problems to a global solution.

Parameter: overlap between subprob-
lems.
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Tree decompositions (by example)

A graph G
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Tree decompositions (by example)

A graph G
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A tree decomposition of G

a, b, c d, e, f d, f , h

f, g

c, d, e h, i

i, j

i, k

Conditions: covering and connectedness.
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Tree decomposition (more formally)

Let G be a graph, T a tree, and γ a labeling of the vertices of T by sets of
vertices of G.

We refer to the vertices of T as “nodes”, and we call the sets γ(t) “bags”.

The pair (T, γ) is a tree decomposition of G if the following three conditions
hold:

1 For every vertex v of G there exists a node t of T such that v ∈ γ(t).
2 For every edge vw of G there exists a node t of T such that v, w ∈ γ(t)

(“covering”).
3 For any three nodes t1, t2, t3 of T , if t2 lies on the unique path from t1 to t3,

then γ(t1) ∩ γ(t3) ⊆ γ(t2) (“connectedness”).
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Treewidth

The width of a tree decomposition (T, γ) is defined as the maximum
|γ(t)| − 1 taken over all nodes t of T .

The treewidth tw(G) of a graph G is the minimum width taken over all its
tree decompositions.
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Basic Facts

Trees have treewidth 1.

Cycles have treewidth 2.

Consider a tree decomposition (T, γ) of a graph G and two adjacent nodes
i, j in T . Let Ti and Tj denote the two trees obtained from T by deleting the
edge ij, such that Ti contains i and Tj contains j. Then, every vertex
contained in both

⋃
a∈V (Ti)

γ(a) and
⋃

b∈V (Tj)
γ(b) is also contained in

γ(i) ∩ γ(j).

The complete graph on n vertices has treewidth n− 1.

If a graph G contains a clique Kr, then every tree decomposition of G
contains a node t such that Kr ⊆ γ(t).
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Complexity of Treewidth

Treewidth
Input: Graph G = (V,E), integer k
Parameter: k
Question: Does G have treewidth at most k?

Treewidth is NP-complete.

Treewidth is FPT, due to a kO(k3) · |V | time algorithm by [Bodlaender ’96]
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Easy problems for bounded treewidth

Many graph problems that are polynomial time solvable on trees are FPT
with parameter treewdith.

Two general methods:

Dynamic programming: compute local information in a bottom-up fashion
along a tree decomposition
Monadic Second Order Logic: express graph problem in some logic formalism
and use a meta-algorithm
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Monadic Second Order Logic

Monadic Second Order (MSO) Logic is a powerful formalism for expressing
graph properties. One can quantify over vertices, edges, vertex sets, and edge
sets.

Courcelle’s theorem: Checking whether a graph G satisfies an MSO property
is FPT parameterized by the treewidth of G plus the length of the MSO
expression. [Courcelle, ’90]

Arnborg et al.’s generalization: Several generalizations. For example, FPT
algorithm for parameter tw(G) + |φ(X)| that takes as input a graph G and
an MSO sentence φ(X) where X is a free (non-quantified) vertex set
variable, that computes a minimum-sized set of vertices X such that F (X) is
true in G. Also, the input vertices and edges may be colored and their color
can be tested. [Arnborg, Lagergren, Seese, ’91]
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Elements of MSO

An MSO formula has

variables representing vertices (u, v, . . . ), edges (a, b, . . . ), vertex subsets
(X,Y, . . . ), or edge subsets (A,B, . . . ) in the graph

atomic operations

u ∈ X: testing set membership
X = Y : testing equality of objects
inc(u, a): incidence test “is vertex u an endpoint of the edge a?”

propositional logic on subformulas: φ1 ∧ φ2, φ1 ∨ φ2, ¬φ1, φ1 ⇒ φ2

Quantifiers: ∀X ⊆ V , ∃A ⊆ E, ∀u ∈ V , ∃a ∈ E, etc.
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Shortcuts in MSO

We can define some shortcuts

u 6= v is ¬(u = v)

X ⊆ Y is ∀v ∈ V (v ∈ X)⇒ (v ∈ Y )

∀v ∈ X ϕ is ∀v ∈ V (v ∈ X)⇒ ϕ

∃v ∈ X ϕ is ∃v ∈ V (v ∈ X) ∧ ϕ
adj(u, v) is (u 6= v) ∧ ∃a ∈ E (inc(u, a) ∧ inc(v, a))
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MSO Logic Example

Example: 3-Coloring,

“there are three independent sets in G = (V,E) which form a partition of V ”

3COL := ∃R ⊆ V ∃G ⊆ V ∃B ⊆ V
partition(R,G,B) ∧ independent(R) ∧ independent(G) ∧ independent(B)
where
partition(R,G,B) := ∀v ∈ V ((v ∈ R ∧ v /∈ G ∧ v /∈ B) ∨ (v /∈ R ∧ v ∈
G ∧ v /∈ B) ∨ (v /∈ R ∧ v /∈ G ∧ v ∈ B))
and
independent(X) := ¬(∃u ∈ X ∃v ∈ X adj(u, v))
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MSO Logic Example II

By Courcelle’s theorem and our 3COL MSO formula, we have:

Theorem 1
3-Coloring is FPT with parameter treewidth.
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Exercise

A domatic k-partition of a graph G = (V,E) is a partition (D1, . . . , Dk) of V into
k dominating sets of G.

(sol+tw)-Domatic Partition

Input: graph G, integer k
Parameter: k + tw(G)
Question: Does G have a domatic k-partition.

Show that (sol+tw)-Domatic Partition is FPT using Courcelle’s theorem
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Solution Sketch

∃D1 ⊆ V ∃D2 ⊆ V . . . ∃Dk ⊆ V
partition(D1, D2, . . . , Dk)∧
∀v ∈ V dom(v,D1) ∧ · · · ∧ dom(v,Dk)

with

dom(v,X) := v ∈ X ∨ ∃x ∈ X adj(v, w)
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Treewidth only for graph problems?

Let us use treewidth to solve a Logic Problem

associate a graph with the instance

take the tree decomposition of the graph

most widely used: primal graphs, incidence graphs, and dual graphs of
formulas.
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Three Treewidth Parameters

CNF Formula F = C ∧D ∧ E ∧ F ∧G where C = (u ∨ v ∨ ¬y),
D = (¬u ∨ z ∨ y), E = (¬v ∨ w), F = (¬w ∨ x), G = (x ∨ y ∨ ¬z).

y

u

v

w

x

z

primal graph

D

G

F E

C

dual graph

D
z

G

x

F
w

E

v

C

u

y

incidence graph

This gives rise to parameters primal treewidth, dual treewidth, and incidence
treewidth.
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Formally

Definition 2

Let F be a CNF formula with variables var(F ) and clauses cla(F ).
The primal graph of F is the graph with vertex set var(F ) where two variables are
adjacent if they appear together in a clause of F .
The dual graph of F is the graph with vertex set cla(F ) where two clauses are
adjacent if they have a variable in common.
The incidence graph of F is the bipartite graph with vertex set var(F ) ∪ cla(F )
where a variable and a clause are adjacent if the variable appears in the clause.
The primal treewidth, dual treewidth, and incidence treewidth of F is the
treewidth of the primal graph, the dual graph, and the incidence graph of F ,
respectively.
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Incidence treewidth is most general

Lemma 3
The incidence treewidth of F is at most the primal treewidth of F plus 1.

Proof.

Start from a tree decomposition (T, γ) of the primal graph with minimum width.
For each clause C:

There is a node t of T with var(C) ⊆ γ(t), since var(C) is a clique in the
primal graph.

Add to t a new neighbor t′ with γ(t′) = γ(t) ∪ {C}.
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Incidence treewidth is most general II

Lemma 4
The incidence treewidth of F is at most the dual treewidth of F plus 1.

Proof.
Exercise.

Primal and dual treewidth are incomparable.

One big clause alone gives large primal treewidth.

{{x, y1}, {x, y2}, . . . , {x, yn}} gives large dual treewidth.
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SAT parameterized by treewidth

Sat
Input: A CNF formula F
Question: Is there an assignment of truth values to var(F ) such that F eval-

uates to true?

Note: If Sat is FPT parameterized by incidence treewidth, then Sat is FPT
parameterized by primal treewidth and by dual treewidth.
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SAT is FPT for parameter incidence treewidth

CNF Formula F = C ∧D ∧ E ∧ F ∧G where C = (u ∨ v ∨ ¬y),
D = (¬u ∨ z ∨ y), E = (¬v ∨ w), F = (¬w ∨ x), G = (x ∨ y ∨ ¬z)

Auxiliary graph:

¬u u ¬v v ¬w w ¬x x ¬y y ¬z z

C D E F G

MSO Formula: “There exists an independent set of literal vertices that
dominates all the clause vertices.”

The treewidth of the auxilary graph is at most twice the treewidth of the
incidence graph plus one.
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FPT via MSO

Theorem 5
Sat is FPT for each of the following parameters: primal treewidth, dual
treewidth, and incidence treewidth.
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Coucelle’s theorem: discussion

Advantages of Courcelle’s theorem:

general, applies to many problems

easy to obtain FPT results

Drawback of Courcelle’s theorem

the resulting running time depends non-elementarily on the treewidth t and
the length ` of the MSO-sentence, i.e., a tower of 2’s whose height is ω(1)

22
2
. .

.
t+`
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Dynamic progamming over tree decompositions

Idea: extend the algorithmic methods that work for trees to tree decompositions.

Step 1 Compute a minumum width tree decomposition using Bodlaender’s
algorithm

Step 2 Transform it into a standard form making computations easier

Step 3 Bottom-up Dynamic Programming (from the leaves of the tree
decomposition to the root)
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Nice tree decomposition

A nice tree decomposition (T, γ) has 4 kinds of bags:

leaf node: leaf t in T and |γ(t)| = 1

introduce node: node t with one child t′ in T and γ(t) = γ(t′) ∪ {x}
forget node: node t with one child t′ in T and γ(t) = γ(t′) \ {x}
join node: node t with two children t1, t2 in T and γ(t) = γ(t1) = γ(t2)

Every tree decomposition of width w of a graph G on n vertices can be
transformed into a nice tree decomposition of width w and O(w · n) nodes in
polynomial time [Kloks ’94].
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Dynamic programming: primal treewidth

Compute a nice tree decomposition (T, γ) of F ’s primal graph with minimum
width [Bodlaender ’96; Kloks ’94]

Select an arbitary root r of T

Denote Tt the subtree of T rooted at t

Denote γ↓(t) = {x ∈ γ(t′) : t′ ∈ V (Tt)}
Denote F↓(t) = {C ∈ F : var(C) ⊆ γ↓(t)}
For a node t and an assignment τ : γ(t)→ {0, 1}, define

sat(t, τ) =


1 if τ can be extended to a

satisfying assignment of F↓(t)

0 otherwise.
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DP: primal treewidth II

sat(t, τ) =


1 if τ can be extended to a

satisfying assignment of F↓(t)

0 otherwise.

Denote x1 = x and x0 = ¬x.
We will view F as a set of clauses and each clause as a set of literals; e.g.
F = {{x,¬y}, {¬x, y, z}} instead of F = (x ∨ ¬y) ∧ (¬x ∨ y ∨ z)

leaf node:

sat(t, {x = a}) =

{
1 if {x1−a} /∈ F
0 otherwise

introduce node: γ(t) = γ(t′) ∪ {x}.

sat(t, {x = a} ∪ {xi = ai}i) = sat(t′, {xi = ai}i)
∧ @C ∈ F : C ⊆ {x1−a} ∪ {x1−ai

i }i.
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DP: primal treewidth III

forget node:

γ(t) = γ(t′) \ {x}.

sat(t, {xi = ai}i) = sat(t′, {x = 0} ∪ {xi = ai}i)
∨ sat(t′, {x = 1} ∪ {xi = ai}i).

join node:

sat(t, {xi = ai}i) = sat(t′, {xi = ai}i)
∧ sat(t′, {xi = ai}i).

Finally: F is satisfiable iff ∃τ : γ(r)→ {0, 1} such that sat(r, τ) = 1

Running time: O∗(2k), where k is the primal treewidth of F , supposed we
are given a minimum width tree decomposition

Also extends to computing the number of satisfying assignments

S. Gaspers (UNSW) Treewidth Semester 2, 2015 39 / 52



DP: primal treewidth III

forget node: γ(t) = γ(t′) \ {x}.

sat(t, {xi = ai}i) = sat(t′, {x = 0} ∪ {xi = ai}i)
∨ sat(t′, {x = 1} ∪ {xi = ai}i).

join node:

sat(t, {xi = ai}i) = sat(t′, {xi = ai}i)
∧ sat(t′, {xi = ai}i).

Finally: F is satisfiable iff ∃τ : γ(r)→ {0, 1} such that sat(r, τ) = 1

Running time: O∗(2k), where k is the primal treewidth of F , supposed we
are given a minimum width tree decomposition

Also extends to computing the number of satisfying assignments

S. Gaspers (UNSW) Treewidth Semester 2, 2015 39 / 52



DP: primal treewidth III

forget node: γ(t) = γ(t′) \ {x}.

sat(t, {xi = ai}i) = sat(t′, {x = 0} ∪ {xi = ai}i)
∨ sat(t′, {x = 1} ∪ {xi = ai}i).

join node:

sat(t, {xi = ai}i) = sat(t′, {xi = ai}i)
∧ sat(t′, {xi = ai}i).

Finally: F is satisfiable iff ∃τ : γ(r)→ {0, 1} such that sat(r, τ) = 1

Running time: O∗(2k), where k is the primal treewidth of F , supposed we
are given a minimum width tree decomposition

Also extends to computing the number of satisfying assignments

S. Gaspers (UNSW) Treewidth Semester 2, 2015 39 / 52



DP: primal treewidth III

forget node: γ(t) = γ(t′) \ {x}.

sat(t, {xi = ai}i) = sat(t′, {x = 0} ∪ {xi = ai}i)
∨ sat(t′, {x = 1} ∪ {xi = ai}i).

join node:

sat(t, {xi = ai}i) = sat(t′, {xi = ai}i)
∧ sat(t′, {xi = ai}i).

Finally: F is satisfiable iff ∃τ : γ(r)→ {0, 1} such that sat(r, τ) = 1

Running time: O∗(2k), where k is the primal treewidth of F , supposed we
are given a minimum width tree decomposition

Also extends to computing the number of satisfying assignments

S. Gaspers (UNSW) Treewidth Semester 2, 2015 39 / 52



Direct Algorithms

Known treewidth based algorithms for Sat:

k = primal tw k = dual tw k = incidence tw

O∗(2k) O∗(2k) O∗(4k)

It is still worth considering primal treewidth and dual treewidth.

These algorithms all count the number of satisfying assignments.
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Constraint Satisfaction Problem

CSP
Input: A set of variables X, a domain D, and a set of constraints C
Question: Is there an assignment τ : X → D satisfying all the constraints in

C?

A constraint has a scope S = (s1, . . . , sr) with si ∈ X, i ∈ {1, . . . , r}, and a
constraint relation R consisting of r-tuples of values in D.
An assignment τ : X → D satisfies a constraint c = (S,R) if there exists a tuple
(d1, . . . , dr) in R such that τ(si) = di for each i ∈ {1, . . . , r}.
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Bounded Treewidth for Constraint Satisfaction

Primal, dual, and incidence graphs are defined similarly as for Sat.

Theorem 6 ([Gottlob, Scarcello, Sideri ’02])

CSP is FPT for parameter primal treewidth if |D| = O(1).

What if domains are unbounded?

What if we consider incidence treewidth?
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Unbounded domains

Theorem 7

CSP is W[1]-hard for parameter primal treewidth.

Proof Sketch.
Parameterized reduction from Clique.
Let (G = (V,E), k) be an instance of Clique.
Take k variables x1, . . . , xk, each with domain V .
Add

(
k
2

)
binary constraints Ei,j , 1 ≤ i < j ≤ k.

A constraint Ei,j has scope (xi, xj) and its constraint relation contains the tuple
(u, v) if uv ∈ E.
The primal treewidth of this CSP instance is at most k − 1.
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Unbounded domains
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Incidence treewidth

Theorem 8

CSP is W[1]-hard for parameter incidence treewidth and Boolean domain
(D = {0, 1}).

Proof.
Exercise: reduction from Clique.
Hints: (1) Use Boolean variables xij with 1 ≤ i ≤ k and 1 ≤ j ≤ n with the
meaning that xij is set to 1 if the ith vertex of the clique corresponds to the jth
vertex in the graph.
(2) Add O(k2) constraints enforcing that for each i ∈ {1, . . . , k}, exactly one xij
is set to 1, and whenever two xij , xi′j′ with i 6= i′ are set to 1, then vertices j and
j′ are adjacent in the graph.
(3) Show that a graph with a vertex cover of size q has treewidth at most q.
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Exercise

tw-Independent Set
Input: Graph G, integer k, and a tree decomposition of G of width t
Parameter: t
Question: Does G have an independent set of size k?

Design an O∗(2t) time DP algorithm for tw-Independent Set.

Hint: Proceed as for the presented Sat algorithm, storing the largest size of an
independent set extending every in/out labeling of the vertices in a bag to all the
vertices contained in bags in the current subtree of the tree decomposition.
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Solution sketch

Obtain a nice tree decomposition (T, γ) of width t in polynomial time.

Denote Ti the subtree of T rooted at node i

Denote γ↓(i) = {v ∈ γ(j) : j ∈ V (Ti)}
Denote G↓(i) = G[γ↓(i)]

For each node i of T , and each S ⊆ γ(i), compute ind(i, S), the size of a
largest independent set of G↓(i) that contains all vertices of S and no vertex
from γ(i) \ S by dynamic programming.
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Solution sketch II

For a leaf node i with γ(i) = {v}:

ind(i, ∅) = 0

ind(i, {v}) = 1

For a forget node i with child i′ and γ(i) = γ(i′) \ {v}:

ind(i, S) = max(ind(i′, S), ind(i′, S ∪ {v})

For an introduce node i with child i′ and γ(i) = γ(i′) ∪ {v}:

ind(i, S) =

{
−∞ if G[S] contains an edge

ind(i′, S \ {v}) + [1 if v ∈ S] otherwise

For a join node i with children i′ and i′′:

ind(i, S) = ind(i′, S) + ind(i′′, S)− |S|
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Exercise

tw-Dominating Set
Input: Graph G, integer k, and a tree decomposition of G of width at

most t
Parameter: t
Question: Does G have a dominating set of size k?

Design an O∗(9t) time DP algorithm for tw-Dominating Set. Can you
even achieve an O∗(4t) time DP algorithm?

Hint: Use labeling (in dominating set) / (not in dominating set and needs to be
dominated) / (not in dominating set but does not need to be dominated).
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Solution sketch

Obtain a nice tree decomposition (T, γ) of width t in polynomial time.

Denote Ti the subtree of T rooted at node i

Denote γ↓(i) = {v ∈ γ(j) : j ∈ V (Ti)}
Denote G↓(i) = G[γ↓(i)]

For each node i of T , and each labelling ` : γ(i)→ {in, outDom, outNd},
compute the smallest size of a subset D of γ↓(i) such that D ∩ γ(i) is the set
of vertices labelled in by `, and that dominates all vertices from γ↓(i) except
those that are labeled outNd by ` by dynamic programming.

The running time depends on how join nodes are handled.
See Section 10.5 in [Niedermeier, ’06] for details.
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Outline

1 Algorithms for trees

2 Tree decompositions
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Further Reading

Chapter 7, Treewidth in
Marek Cygan, Fedor V. Fomin,  Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Micha lPilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

Chapter 5, Treewidth in
Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer,
2010.

Chapter 10, Tree Decompositions of Graphs in
Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford
University Press, 2006.

Chapter 10, Treewidth and Dynamic Programming in
Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.

Chapter 13, Courcelle’s Theorem in
Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.

S. Gaspers (UNSW) Treewidth Semester 2, 2015 52 / 52


	Algorithms for trees
	Tree decompositions
	Monadic Second Order Logic
	Dynamic Programming over Tree Decompositions
	Sat
	CSP

	Further Reading

