
11. Kernel Lower Bounds

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2015

Contents

1 Reminder 1

2 A kernel for Hamiltonian Cycle 1

3 A kernel for Edge Clique Cover 2

4 Compression 4

5 Kernel Lower Bounds 4

6 Further Reading 8

1 Reminder

Kernelization

Definition 1. A kernelization (kernel) for a parameterized problem Π is a polynomial time algorithm, which,
for any instance I of Π with parameter k, produces an equivalent instance I ′ of Π with parameter k′ such that
|I ′| ≤ f(k) and k′ ≤ f(k) for a computable function f . We refer to the function f as the size of the kernel.

Fixed-parameter tractability

Definition 2. A parameterized problem Π is fixed-parameter tractable (FPT) if there is an algorithm solving Π
in time f(k) · poly(n), where n is the instance size, k is the parameter, poly is a polynomial function, and f is a
computable function.

Theorem 3. Let Π be a decidable parameterized problem. Π has a kernelization ⇔ Π is FPT.

2 A kernel for Hamiltonian Cycle

Hamiltonian Cycle
A Hamiltonian cycle of G is a subgraph of G that is a cycle on |V (G)| vertices.

vc-Hamiltonian Cycle
Input: A graph G = (V,E).
Parameter: k = vc(G), the size of a smallest vertex cover of G.
Question: Does G have a Hamiltonian cycle?

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an
instance?
Issue: We do not actually know a vertex cover of size k.

1

• Obtain a vertex cover of size ≤ 2k by applying Vertex Cover-kernelizations to (G, 0), (G, 1), . . . until the
first instance where no trivial No-instance is returned.

• If C is a vertex cover of size ≤ 2k, then I = V \ C is an independent set of size ≥ |V | − 2k.

• No two consecutive vertices in the Hamiltonian Cycle can be in I.

• A kernel with ≤ 4k vertices can now be obtained with the following simplification rule.

(Too-large)
Compute a vertex cover C of size ≤ 2k in polynomial time. If 2|C| < |V |, then return No

3 A kernel for Edge Clique Cover

Edge Clique Cover

Definition 4. An edge clique cover of a graph G = (V,E) is a set of cliques in G covering all its edges. In other
words, if C ⊆ 2V is an edge clique cover then each S ∈ C is a clique in G and for each {u, v} ∈ E there exists an
S ∈ C such that u, v ∈ S.

Example: {{a, b, c}, {b, c, d, e}} is an edge clique cover for this graph.

a

b c

d e

Edge Clique Cover

Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have an edge clique cover of size at most k?

The size of an edge clique cover C is the number of cliques contained in C and is denoted |C|.

Helpful properties

Definition 5. A clique S in a graph G is a maximal clique if there is no other clique S′ in G with S ⊂ S′.

Lemma 6. A graph G has an edge clique cover C of size at most k if and only if G has an edge clique cover C′ of
size at most k such that each S ∈ C′ is a maximal clique.

Proof sketch. (⇒): Replace each clique S ∈ C by a maximal clique S′ with S ⊆ S′.
(⇐): Trivial, since C′ is an edge clique cover of size at most k.

Simplification rules for Edge Clique Cover
Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an
instance?
The instance could have many degree-0 vertices.

(Isolated)
If there exists a vertex v ∈ V with dG(v) = 0, then set G← G− v.

Lemma 7. (Isolated) is sound.

Proof sketch. Since no edge is incident to v, a smallest edge clique cover for G − v is a smallest edge clique cover
for G, and vice-versa.

2

(Isolated-Edge)
If ∃uv ∈ E such that dG(u) = dG(v) = 1, then set G← G− {u, v} and k ← k − 1.

(Twins)
If ∃u, v ∈ V , u 6= v, such that NG[u] = NG[v], then set G← G− v.

Lemma 8. (Twins) is sound.

Proof. We need to show that G has an edge clique cover of size at most k if and only if G − v has an edge clique
cover of size at most k.

(⇒): If C is an edge clique cover of G of size at most k, then {S \ {v} : S ∈ C} is an edge clique cover of G− v
of size at most k.

(⇐): Let C′ be an edge clique cover of G − v of size at most k. Partition C into Cu = {S ∈ C : u ∈ S} and
C¬u = C \ Cu. Note that each set in C′u = {S ∪ {v} : S ∈ Cu} is a clique since NG[u] = NG[v] and that each edge
incident to v is contained in at least one of these cliques. Now, C′u ∪C¬u is an edge clique cover of G of size at most
k.

(Size-V)
If the previous simplification rules do not apply and |V | > 2k, then return No.

Lemma 9. (Size-V) is sound.

Proof. For the sake of contradiction, assume neither (Isolated) nor (Twins) are applicable, |V | > 2k, and G has
an edge clique cover C of size at most k. Since 2C (the set of all subsets of C) has size at most 2k, and every
vertex belongs to at least one clique in C by (Isolated), we have that there exists two vertices u, v ∈ V such that
{S ∈ C : u ∈ S} = {S ∈ C : v ∈ S}. But then, NG[u] =

⋃
S∈C:u∈S S =

⋃
S∈C:v∈S S = NG[v], contradicting that

(Twin) is not applicable.

Kernel for Edge Clique Cover

Theorem 10. Edge Clique Cover has a kernel with O(2k) vertices and O(4k) edges.

Corollary 11. Edge Clique Cover is FPT.

Possible issues designing simplification rules
Issue 1: A kernelization needs to produce an instance of the same problem.

How could we turn the following lemma into a simplification rule?

Lemma 12. If there is an edge {u, v} ∈ E such that S = NG[u] ∩NG[v] is a clique, then there is a smallest edge
clique cover C with S ∈ C.

Proof. By Lemma 6, we may assume the clique covering the edge {u, v} is a maximal clique. But, S is the unique
maximal clique covering {u, v}.

(Neighborhood-Clique)
If there exists {u, v} ∈ E such that S = NG[u] ∩NG[v] is a clique, then ...???

Edges with both endpoints in S \ {u, v} are covered by S but might still be needed in other cliques.
We could design a kernelization for a more general problem.

Generalized Edge Clique Cover

Input: A graph G = (V,E), a set of edges R ⊆ E, and an integer k
Parameter: k
Question: Is there a set C of at most k cliques in G such that each e ∈ R is contained in at least one of

these cliques?

3

(Neighborhood-Clique)
If there exists {u, v} ∈ R such that S = NG[u] ∩NG[v] is a clique, then set G← (V,E \ {u, v}), R ← R \ {{x, y} :
x, y ∈ S}, and k ← k − 1.

Issue 2: A proposed simplification rule might not be sound.

Consider the following simplification rule for Vertex Cover.

(Optimistic-Degree-(≥ k))
If ∃v ∈ V such that dG(v) ≥ k, then set G← G− v and k ← k − 1.

To show that a simplification rule is not sound, we exhibit a counter-example.

Lemma 13. (Optimistic-Degree-(≥ k)) is not sound for Vertex Cover.

Proof. Consider the instance consisting of the following graph and k = 3.

ca1b1

a2 b2

a3 b3

Since M = {{ai, bi} : 1 ≤ i ≤ 3} is a matching, a vertex cover contains at least one endpoint of each edge in M .
The rule would add c to the vertex cover, leading to a vertex cover of size at least 4. However, {ai : 1 ≤ i ≤ 3} is a
vertex cover of size 3.

Issue 3: A problem might be FPT, but only an exponential kernel might be known / possible to achieve.

4 Compression

Definition

Definition 14. A compression from a parameterized problem Π1 to a problem Π2 (the problem Π2 is not necessarily
parameterized) is a polynomial time algorithm, which, for any instance I1 of Π1 with parameter k1, produces an
equivalent instance I2 of Π2 such that |I2| ≤ f(k1) for a computable function f . We refer to the function f as the
size of the compression.

Note: A kernelization is a compression where Π1 = Π2.

Compressions lead to Kernels

Theorem 15. Let Π1 be an NP-hard parameterized problem and Π2 be a problem in NP. If Π1 has a polynomial
compression to Π2, then Π1 has a polynomial kernel.

Proof. Denote by R a polynomial-time reduction from Π2 to Π1. Such a reduction exists by the definition of NP-
hardness (a problem is NP-hard if every problem in NP can be reduced to it in polynomial time.) Let I1 be an
instance for Π1 with parameter k1. Apply the polynomial compression to I1 to obtain an equivalent instance I2 for
Π2 such that |I2| ∈ (k1)O(1). Now, |R(I2)| ∈ (k1)O(1).

5 Kernel Lower Bounds

Polynomial vs. exponential kernels

• For some FPT problems, only exponential kernels are known.

• Could it be that all FPT problems have polynomial kernels?

• We will see that polynomial kernels for some fixed-parameter tractable parameterized problems would con-
tradict complexity-theoretic assumptions.

4

Intuition by example

Long Path
Input: A graph G = (V,E), and an integer k ≤ |V |.
Parameter: k
Question: Does G have a path of length at least k (as a subgraph)?

Long Path is NP-complete but FPT.

• Assume Long Path has a kc kernel, where c = O(1).

• Set q = kc + 1 and consider q instances with the same parameter k:

(G1, k), (G2, k), . . . , (Gq, k).

• Let G = G1 ⊕G2 ⊕ · · · ⊕Gq be the disjoint union of all these graphs.

• Note that (G, k) is a Yes-instance if and only if at least one of (Gi, k), 1 ≤ i ≤ q, is a Yes-instance.

• Kernelizing (G, k) gives an instance of size kc, i.e., on average less than one bit per original instance.

• “The kernelization must have solved at least one of the original NP-hard instances in polynomial time”.

Distillation

Definition 16. Let Π1,Π2 be two problems. An OR-distillation (resp., AND-distillation) from Π1 into Π2 is a
polynomial time algorithm D whose input is a sequence I1, . . . , Iq of instances for Π1 and whose output is an
instance I ′ for Π2 such that

• |I ′| ≤ poly(max1≤i≤q |Ii|), and

• I ′ is a Yes-instance for Π2 if and only if for at least one (resp., for each) i ∈ {1, . . . , q} we have that Ii is a
Yes-instance for Π1.

NP-complete problems don’t have distillations

Theorem 17 ([Fortnow, Santhanam, 2008]). If any NP-complete problem has an OR-distillation, then coNP ⊆
NP/poly. 1

Note: coNP ⊆ NP/poly is not believed to be true and it would imply that the polynomial hierarchy collapses to
the third level: PH ⊆ Σp

3.

Theorem 18 ([Drucker, 2012]). If any NP-complete problem has an AND-distillation, then coNP ⊆ NP/poly.

Composition algorithms

Definition 19. Let Π be a parameterized problem. An OR-composition (resp., AND-composition) of Π is a
polynomial time algorithm A that receives as input a finite sequence I1, . . . , Iq of Π with parameters k1 = · · · =
kq = k and outputs an instance I ′ for Π with parameter k′ such that

• k′ ≤ poly(k), and

• I ′ is a Yes-instance for Π if and only if for at least one (resp., for each) i ∈ {1, . . . , q}, Ii is a Yes-instance
for Π.

1NP/poly is the class of all decision problems for which there exists a polynomial-time nondeterministic Turing Machine M with the
following property: for every n ≥ 0, there is an advice string A of length poly(n) such that, for every input I of length n, the machine
M correctly decides the problem with input I, given I and A.

5

Tool for showing kernel lower bounds

Theorem 20 (Composition Theorem). Let Π be an NP-complete parameterized problem such that for each instance
I of Π with parameter k, the value of the parameter k can be computed in polynomial time and k ≤ |I|. If Π has
an OR-composition or an AND-composition, then Π has no polynomial kernel, unless coNP ⊆ NP/poly.

Proof sketch. Suppose Π has an OR/AND-composition and a polynomial kernel. Then, one can obtain an OR/AND-
distillation from Π into OR(Π)/AND(Π).

I1 I2 . . . Iq q instances of size ≤ n = max
1≤i≤q

|Ii|

{Ii : ki = 0} . . . {Ii : ki = n} group by parameter

I ′0 I ′1 . . . I ′n After OR-composition: n+ 1 instances with k′i ≤ poly(n)

I ′′0 I ′′1 . . . I ′′n After kernelization: n+ 1 instances of size poly(n) each

This is an instance of OR(Π) of size poly(n).

Long Path has no polynomial kernel

Theorem 21. Long Path has no polynomial kernel unless NP ⊆ coNP/poly.

Proof. Clearly, k can be computed in polynomial time and k ≤ |V |. We give an OR-composition for Long Path,
which will prove the theorem by the previous lemma. It receives as input a sequence of instances for Long Path:
(G1, k), . . . , (Gq, k), and it produces the instance (G1 ⊕ · · · ⊕Gq, k), which is a Yes-instance if and only if at least
one of (G1, k), . . . , (Gq, k) is a Yes-instance.

var-SAT has no poly kernel

var-SAT
Input: A propositional formula F in conjunctive normal form (CNF)
Parameter: n = |var(F)|, the number of variables in F
Question: Is there an assignment to var(F) satisfying all clauses of F?

Example:

(x1 ∨ x2) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

or

{{x1, x2}, {¬x2, x3,¬x4}, {x1, x4}, {¬x1,¬x3,¬x4}}

Theorem 22. var-SAT has no polynomial kernel unless NP ⊆ coNP/poly.

Proof. Clearly, var(F) can be computed in polynomial time and n = |var(F)| ≤ |F |. We give an OR-composition
for var-SAT, which will prove the theorem by the previous lemma.

• Let F1, . . . , Fq be CNF formulas, |Fi| ≤ m, |var(Fi)| = n.

• We can decide whether one of the formulas is satisfiable in time poly(mt2n). Hence, if q > 2n, the check is
polynomial. If some formula is satisfiable, we output this formula, otherwise we output F1.

• It remains the case q ≤ 2n. We assume var(F1) = · · · = var(Fq), otherwise we change the names of variables.

• Let s = dlog2 qe. Since q ≤ 2n, we have that s ≤ n.

• We take a set Y = {y1, . . . , ys} of new variables. Let C1, . . . , C2s be the sequence of all 2s possible clauses
containing exactly s literals over the variables in Y .

• For 1 ≤ i ≤ q we let F ′i = {C ∪ Ci : C ∈ Fi}.

• We define F =
⋃q

i=1 F
′
i ∪ {Ci : q + 1 ≤ i ≤ 2s}.

• Claim: F is satisfiable if and only if Fi is satisfiable for some 1 ≤ i ≤ q.

• Hence we have an OR-composition.

6

Another tool for showing kernel lower bounds

Definition 23. Let Π1,Π2 be parameterized problems. A polynomial parameter transformation from Π1 to Π2 is a
polynomial time algorithm, which, for any instance I1 of Π1 with parameter k1, produces an equivalent instance
I2 of Π2 with parameter k2 such that k2 ≤ poly(k1).

Theorem 24. Let Π1,Π2 be parameterized problems such that Π1 is NP-complete, Π2 is in NP, and there is a
polynomial parameter transformation from Π1 to Π2. If Π2 has a polynomial kernel, then Π1 has a polynomial
kernel.

Remark: If we know that an NP-complete parameterized problem Π1 has no polynomial kernel (unless NP ⊆
coNP/poly), we can use the theorem to show that some other NP-complete parameterized problem Π2 has no
polynomial kernel (unless NP ⊆ coNP/poly) by giving a polynomial parameter transformation from Π1 to Π2.

Proof. • We show that under the assumptions of the theorem Π1 has a polynomial kernel.

• Let I1 be an instance of Π1 with parameter k1.

• We obtain in polynomial time an equivalent instance I2 of Π2 with parameter k2 ≤ poly(k1).

• We apply Π2’s kernelization and obtain I ′2 of size ≤ poly(k1).

• Since Π2 is in NP and Π1 is NP-complete, there exists a polynomial time reduction that maps I ′2 to an
equivalent instance I ′1 of Π1.

• The size of I ′1 is polynomial in k1.

2CNF-Backdoor Evaluation

Definition 25. A CNF formula F is a 2CNF formula if each clause of F has at most 2 literals.

Note: SAT is polynomial time solvable when the input is restricted to be a 2CNF formula.

Definition 26. A 2CNF-backdoor of a CNF formula F is a set of variables B ⊆ var(F) such that for each assignment
α : B → {0, 1}, the formula F [α] is a 2CNF formula. Here, F [α] is obtained by removing all clauses containing a
literal set to 1 by α, and removing the literals set to 0 from all remaining clauses.

2CNF-Backdoor Evaluation
Input: A CNF formula F and a 2CNF-backdoor B of F
Parameter: k = |B|
Question: Is F satisfiable?

Note: the problem is FPT by trying all assignments to B and evaluating the resulting formulas.

Theorem 27. 2CNF-Backdoor Evaluation has no polynomial kernel unless NP ⊆ coNP/poly.

Proof. We give a polynomial parameter transformation from var-SAT to 2CNF-Backdoor Evaluation. Let F be
an instance for var-SAT. Then, (F,B = var(F)) is an equivalent instance for 2CNF-Backdoor Evaluationwith
|B| ≤ |var(F)|.

Exercise

Path Packing
Input: A graph G and an integer k
Parameter: k
Question: Are there k pairwise vertex-disjoint paths of length at least k each?

• Show that Path Packing has no polynomial kernel unless NP ⊆ coNP/poly.

Hint: Compositions seem challenging.

7

Solution

Theorem 28. Path Packing has no polynomial kernel unless NP ⊆ coNP/poly.

Proof. We give a polynomial parameter transformation from Long Pathto Path Packing. Given an instance
(G, k) to Long Pathwe construct a graph G′ from G by adding k − 1 vertex-disjoint paths of length k. Now, G
contains a path of length k if and only if G′ contains k vertex-disjoint paths of length k.

6 Further Reading

• Chapter 15, Lower bounds for kernelization in Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lok-
shtanov, Dániel Marx, Marcin Pilipczuk, Micha lPilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

• Chapter 30 (30.1–30.4), Kernelization Lower Bounds in Rodney G. Downey and Michael R. Fellows. Funda-
mentals of Parameterized Complexity. Springer, 2013.

• Neeldhara Misra, Venkatesh Raman, and Saket Saurabh. Lower bounds on kernelization. Discrete Optimiza-
tion 8(1): 110-128 (2011).

8

	Reminder
	A kernel for Hamiltonian Cycle
	A kernel for Edge Clique Cover
	Compression
	Kernel Lower Bounds
	Further Reading

