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Kernelization

Definition 1

A kernelization (kernel) for a parameterized problem II is a polynomial time
algorithm, which, for any instance I of II with parameter k, produces an
equivalent instance I’ of IT with parameter £’ such that |I’| < f(k) and

k" < f(k) for a computable function f.

We refer to the function f as the size of the kernel.
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Fixed-parameter tractability

Definition 2

A parameterized problem II is fixed-parameter tractable (FPT) if there is an
algorithm solving II in time f(k) - poly(n), where n is the instance size, k is the
parameter, poly is a polynomial function, and f is a computable function.

Let II be a decidable parameterized problem.
IT has a kernelization < 11 is FPT.
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© A kernel for HAMILTONIAN CYCLE
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HaAaMILTONIAN CYCLE |

A Hamiltonian cycle of G is a subgraph of G that is a cycle on |V (G)] vertices.

vc-HAMILTONIAN CYCLE
Input: A graph G = (V, E).
Parameter: k& = vc(G), the size of a smallest vertex cover of G.
Question: Does GG have a Hamiltonian cycle?

Thought experiment: Imagine a very large instance where the parameter is tiny.
How can you simplify such an instance?

S. Gaspers (UNSW) Kernel Lower Bounds Semester 2, 2015 7/ 42



HaMIiLTONIAN CYCLE Il

Issue: We do not actually know a vertex cover of size k.
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HAaMILTONIAN CYCLE |l

@ Obtain a vertex cover of size < 2k by applying VERTEX
CoVER-kernelizations to (G,0), (G,1),... until the first instance where no
trivial NO-instance is returned.

o If C is a vertex cover of size < 2k, then I = V' \ C'is an independent set of
size > |V| — 2k.

@ No two consecutive vertices in the Hamiltonian Cycle can be in I.

@ A kernel with < 4k vertices can now be obtained with the following
simplification rule.

(Too-large)

Compute a vertex cover C' of size < 2k in polynomial time.
If 2|C| < |V, then return NO
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© A kemel for EDGE CLIQUE COVER
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EDGE CLIQUE COVER

Definition 4

An edge clique cover of a graph G = (V. E) is a set of cliques in G covering all
its edges.

In other words, if C C 2" is an edge clique cover then each S € C is a clique in G
and for each {u,v} € E there exists an S € C such that u,v € S.

Example: {{a,b,c},{b,c,d,e}} is an edge clique cover for this graph.
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EDGE CLIQUE COVER

EpGE CLIQUE COVER
Input: A graph G = (V, E) and an integer k
Parameter: &
Question: Does GG have an edge clique cover of size at most k7

The size of an edge clique cover C is the number of cliques contained in C and is
denoted |C|.
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Helpful properties

A clique S in a graph G is a maximal clique if there is no other clique S’ in G
with S C 5.

Lemma 5

| A

A graph G has an edge clique cover C of size at most k if and only if G has an
edge clique cover C' of size at most k such that each S € C' is a maximal clique.

4

Proof sketch.

(=): Replace each clique S € C by a maximal clique S’ with S C S’.
(«<): Trivial, since C’ is an edge clique cover of size at most k. OJ
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Simplification rules for EDGE CLIQUE COVER

Thought experiment: Imagine a very large instance where the parameter is tiny.
How can you simplify such an instance?
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Simplification rules for EDGE CLIQUE COVER I

The instance could have many degree-0 vertices.

If there exists a vertex v € V with dg(v) = 0, then set G < G — v.

(Isolated) is sound.

Proof sketch.

Since no edge is incident to v, a smallest edge clique cover for G — v is a smallest
edge clique cover for (G, and vice-versa. O
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Simplification rules for EDGE CLIQUE COVER I

The instance could have many degree-0 vertices.

(Isolated)
If there exists a vertex v € V with dg(v) = 0, then set G < G — v.

(Isolated) is sound.

Proof sketch.

Since no edge is incident to v, a smallest edge clique cover for G — v is a smallest
edge clique cover for (G, and vice-versa. O

(Isolated-Edge)

If 3uv € E such that dg(u) = dg(v) = 1, then set G < G — {u,v} and
k< k—1.
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Simplification rules for EDGE CLIQUE COVER IlI

If Ju,v € V, u # v, such that Ng[u] = Ng[v], then set G < G — v.

(Twins) is sound. I
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Simplification rules for EDGE CLIQUE COVER IlI

If Ju,v € V, u # v, such that Ng[u] = Ng[v], then set G < G — v.

(Twins) is sound. \

Proof.

We need to show that GG has an edge clique cover of size at most & if and only if
G — v has an edge clique cover of size at most k.

(=): If C is an edge clique cover of G of size at most k, then {S\ {v}: S €C}is
an edge clique cover of G — v of size at most k.

(«<): Let C’ be an edge clique cover of G — v of size at most k. Partition C into
C,={Se€C:ueS}andC., =C)\C,. Note that each set in

C,, ={SU{v}:Se€C,} is aclique since Ng[u] = N¢[v] and that each edge
incident to v is contained in at least one of these cliques. Now, C/, UC-,, is an

edge clique cover of GG of size at most k. O
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Simplification rules for EDGE CLIQUE COVER IV

If the previous simplification rules do not apply and |V/| > 2%, then return No.

Lemma 8

(Size-V) is sound.
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Simplification rules for EDGE CLIQUE COVER IV

If the previous simplification rules do not apply and |V/| > 2%, then return No.

Lemma 8

(Size-V) is sound.

Proof.

For the sake of contradiction, assume neither (Isolated) nor (Twins) are
applicable, |V'| > 2%, and (i has an edge clique cover C of size at most k. Since
2C (the set of all subsets of C) has size at most 2”, and every vertex belongs to at
least one clique in C by (Isolated), we have that there exists two vertices u,v € V'
such that {Se€C:ue S} ={S €C:veS} Butthen,

Nglu] = Useccives S = Useciwes S = Nalv], contradicting that (Twin) is not
applicable. ]

v
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Kernel for EDGE CLIQUE COVER

Theorem 9

EDGE CLIQUE COVER has a kernel with O(2F) vertices and O(4%) edges.

Corollary 10
EDGE CLIQUE COVER is FPT.
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Possible issues designing simplification rules

Issue 1: A kernelization needs to produce an instance of the same problem.

How could we turn the following lemma into a simplification rule?

If there is an edge {u,v} € E such that S = Ng[u] N N¢[v] is a clique, then there
is a smallest edge clique cover C with S € C.

v

Proof.
By Lemma 5, we may assume the clique covering the edge {u, v} is a maximal
clique. But, S is the unique maximal clique covering {u, v}. Ol

v
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Possible issues designing simplification rules

(Neighborhood-Clique)

If there exists {u,v} € E such that S = Ng[u] N Ng[v] is a clique, then ...?77

Edges with both endpoints in S\ {u, v} are covered by S but might still be
needed in other cliques.
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Possible issues designing simplification rules

We could design a kernelization for a more general problem.

GENERALIZED EDGE CLIQUE COVER

Input: A graph G = (V, E), a set of edges R C F, and an integer k
Parameter: k
Question: Is there a set C of at most k cliques in GG such that each e € R is

contained in at least one of these cliques?

(Neighborhood-Clique)

If there exists {u,v} € R such that S = Ng[u] N Ng[v] is a clique, then set
G+ (V,E\{u,v}), R+ R\ {{z,y}:z,y € S}, and k + k — 1.
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Possible issues designing simplification rules

Issue 2: A proposed simplification rule might not be sound.
Consider the following simplification rule for VERTEX COVER.

(Optimistic-Degree-(> k))

If 3v € V such that dg(v) > k, then set G <+~ G —v and k <+ k — 1.

To show that a simplification rule is not sound, we exhibit a counter-example.

(Optimistic-Degree-(> k)) is not sound for VERTEX COVER. I
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Possible issues designing simplification rules

)

(Optimistic-Degree-(>
If 3v € V such that d¢(v)

k
>

El

,thenset G+ G —wvand k + k — 1.

(Optimistic-Degree-(> k)) is not sound for VERTEX COVER.

Proof.

Consider the instance consisting of the following graph and £ = 3.

ag by

Since M = {{a;,b;} : 1 <i < 3} is a matching, a vertex cover contains at least
one endpoint of each edge in M. The rule would add ¢ to the vertex cover,
leading to a vertex cover of size at least 4. However, {a; : 1 <i < 3} is a vertex

cover of size 3. O]
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Possible issues designing simplification rules

Issue 3: A problem might be FPT, but only an exponential kernel might be
known / possible to achieve.
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Definition 11

A compression from a parameterized problem II; to a problem II5 (the problem
IT, is not necessarily parameterized) is a polynomial time algorithm, which, for
any instance [y of II; with parameter &, produces an equivalent instance /5 of
IT5 such that |I5| < f(k1) for a computable function f.

We refer to the function f as the size of the compression.

Note: A kernelization is a compression where II; = Il.

20 / 42
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Compressions lead to Kernels

Theorem 12

Let TI; be an NP-hard parameterized problem and 11, be a problem in NP.
If I1; has a polynomial compression to Ils, then I1; has a polynomial kernel.

| \

Proof.

Denote by R a polynomial-time reduction from Il to II;. Such a reduction exists
by the definition of NP-hardness (a problem is NP-hard if every problem in NP
can be reduced to it in polynomial time.)

Let I; be an instance for II; with parameter k;. Apply the polynomial
compression to /; to obtain an equivalent instance I for Il such that

|IQ| € (k?l)o(l). Now, |R(I2)‘ € (/{71)0(1>. L]
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Polynomial vs. exponential kernels

@ For some FPT problems, only exponential kernels are known.
@ Could it be that all FPT problems have polynomial kernels?

@ We will see that polynomial kernels for some fixed-parameter tractable
parameterized problems would contradict complexity-theoretic assumptions.
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Intuition by example

LoNG PATH
Input: A graph G = (V, E), and an integer k < |V].
Parameter: k
Question:  Does G have a path of length at least k (as a subgraph)?

LoNG PATH is NP-complete but FPT.

Semester 2, 2015 24 [ 42
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Intuition by example

@ Assume LONG PATH has a k¢ kernel, where ¢ = O(1).

@ Set ¢ = k° + 1 and consider ¢ instances with the same parameter k:
(G1,k),(Ga,k),...,(Gg, k).

o let G =G, ®G2® - @ G, be the disjoint union of all these graphs.
o Note that (G, k) is a YEs-instance if and only if at least one of
(G, k), 1 <i<gq,is a YEs-instance.

o Kernelizing (G, k) gives an instance of size k€, i.e., on average less than one
bit per original instance.

@ "“The kernelization must have solved at least one of the original NP-hard
instances in polynomial time".
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Distillation

Definition 13

Let TI;, I, be two problems. An OR-distillation (resp., AND-distillation) from TI;
into I is a polynomial time algorithm D whose input is a sequence I, ..., 1, of
instances for II; and whose output is an instance I’ for II; such that
o |I'| < poly(maxi<;<q|Z;|), and
@ [’ is a YEs-instance for II, if and only if for at least one (resp., for each)
i€{l,...,q} we have that I; is a YEs-instance for II;.
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NP-complete problems don’t have distillations

Theorem 14 (
If any NP-complete problem has an OR-distillation, then coNP C NP /poly. !

Note: coNP C NP/poly is not believed to be true and it would imply that the
polynomial hierarchy collapses to the third level: PH C 3.

If any NP-complete problem has an AND-distillation, then coNP C NP /poly.

1NP/pon is the class of all decision problems for which there exists a polynomial-time
nondeterministic Turing Machine M with the following property: for every n > 0, there is an
advice string A of length poly(n) such that, for every input I of length n, the machine M
correctly decides the problem with input 7, given I and A.
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Composition algorithms

Definition 16

Let IT be a parameterized problem. An OR-composition (resp., AND-composition)
of IT is a polynomial time algorithm A that receives as input a finite sequence
I,..., I, of II with parameters k; = --- = k, = k and outputs an instance I’ for
IT with parameter £’ such that

e k' < poly(k), and

o [’ is a YEs-instance for II if and only if for at least one (resp., for each)
i€{l,...,q}, I; is a YEs-instance for II.
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Tool for showing kernel lower bounds

Theorem 17 (Composition Theorem)

Let TI be an NP-complete parameterized problem such that for each instance I of
IT with parameter k, the value of the parameter k can be computed in polynomial
time and k < |I|. IfII has an OR-composition or an AND-composition, then I1
has no polynomial kernel, unless coNP C NP /poly.
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Tool for showing kernel lower bounds

Theorem 17 (Composition Theorem)

Let TI be an NP-complete parameterized problem such that for each instance I of
IT with parameter k, the value of the parameter k can be computed in polynomial
time and k < |I|. IfII has an OR-composition or an AND-composition, then I1
has no polynomial kernel, unless coNP C NP /poly.

Proof sketch.

Suppose II has an OR/AND-composition and a polynomial kernel. Then, one can
obtain an OR/AND-distillation from II into OR(II)/AND(II).

| A
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Tool for showing kernel lower bounds

Theorem 17 (Composition Theorem)

Let TI be an NP-complete parameterized problem such that for each instance I of
IT with parameter k, the value of the parameter k can be computed in polynomial
time and k < |I|. IfII has an OR-composition or an AND-composition, then I1
has no polynomial kernel, unless coNP C NP /poly.

Proof sketch.

Suppose II has an OR/AND-composition and a polynomial kernel. Then, one can
obtain an OR/AND-distillation from II into OR(II)/AND(II).

I I I, g instances of size <n = max |I;|
1<i<q

| A

{Ii : k; =0}...{I; : k;, =n} group by parameter
7 I . I/, After OR-composition: n + 1 instances with k} < poly(n)
Iy Iy I'!  After kernelization: n + 1 instances of size poly(n) each

This is an instance of OR(II) of size poly(n).

O

v
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LoNG PATH has no polynomial kernel |
Theorem 18
LoNG PATH has no polynomial kernel unless NP C coNP /poly.

Proof.

Clearly, k& can be computed in polynomial time and k& < |V].
We give an OR-composition for LONG PATH, which will prove the theorem by the
previous lemma.

It receives as input a sequence of instances for LONG PATH: (G1,k),...,(Gy, k),
and it produces the instance (G; & - - - @& Gy, k), which is a YEs-instance if and
only if at least one of (G4, k), ..., (Gy, k) is a YES-instance. Ol

v
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var-SAT has no poly kernel |

var-SAT
Input: A propositional formula F in conjunctive normal form (CNF)
Parameter: n = |var(F)|, the number of variables in F
Question: Is there an assignment to var(F') satisfying all clauses of F?
Example:

(.’131 V .772) A (_\.’112 \ T3 vV _|.7?4) AN (.7,‘1 vV .’1}4) A (",7,‘1 vV T3 vV _|.774)
or

{{:L'l» Q’?Q}, {"x27 x3, ﬁ:]“‘4}7 {xlv $4}a {ﬁxl, -3, ﬁ14}}
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var-SAT has no poly kernel Il

Theorem 19
var-SAT has no polynomial kernel unless NP C coNP /poly.

Proof.
Clearly, var(F') can be computed in polynomial time and n = |var(F)| < |F.
We give an OR-composition for var-SAT, which will prove the theorem by the
previous lemma.
o Let F,..., F, be CNF formulas, |F;| < m, |var(F;)| = n.
@ We can decide whether one of the formulas is satisfiable in time poly(mit2™).
Hence, if ¢ > 2", the check is polynomial. If some formula is satisfiable, we
output this formula, otherwise we output F;.
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var-SAT has no poly kernel Il

Proof (continued).

@ It remains the case g < 2. We assume var(F}) = - -- = var(F}), otherwise
we change the names of variables.

o Let s = [log, ¢]. Since g < 2", we have that s < n.

o We take aset Y = {y1,...,ys} of new variables. Let C1,...,C5: be the
sequence of all 2° possible clauses containing exactly s literals over the
variables in Y.

For1<i<gqgwelet F/ ={CUC;:C € F;}.
We define F = J!_, F/U{C;: ¢+ 1 <i <25}
Claim: F is satisfiable if and only if F; is satisfiable for some 1 <7 < g.

Hence we have an OR-composition.
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Another tool for showing kernel lower bounds |

Definition 20

Let II;,II; be parameterized problems. A polynomial parameter transformation

from II; to Ils is a polynomial time algorithm, which, for any instance I of II;
with parameter k1, produces an equivalent instance I of I, with parameter k-

such that ko < poly (k).
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Another tool for showing kernel lower bounds Il

Let 111,115 be parameterized problems such that 11, is NP-complete, 115 is in NP,
and there is a polynomial parameter transformation from 11, to Il5. If 15 has a
polynomial kernel, then 11, has a polynomial kernel.

Remark: If we know that an NP-complete parameterized problem II; has no
polynomial kernel (unless NP C coNP /poly), we can use the theorem to show that
some other NP-complete parameterized problem II5 has no polynomial kernel
(unless NP C coNP/poly) by giving a polynomial parameter transformation from
11 to IIs.
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Another tool for showing kernel lower bounds Ill

We show that under the assumptions of the theorem II; has a polynomial
kernel.

Let I; be an instance of II; with parameter k;.

We obtain in polynomial time an equivalent instance 5 of II; with parameter

ko < poly(k1).
We apply II5's kernelization and obtain 1) of size < poly(k;).

Since 115 is in NP and II; is NP-complete, there exists a polynomial time
reduction that maps I/ to an equivalent instance I of II;.

The size of I} is polynomial in k;.
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2CNF-BACKDOOR EVALUATION |

Definition 22
A CNF formula F is a 2CNF formula if each clause of F' has at most 2 literals.

Note: SAT is polynomial time solvable when the input is restricted to be a 2CNF
formula.

Definition 23

A 2CNF-backdoor of a CNF formula F' is a set of variables B C var(F') such that
for each assignment o : B — {0, 1}, the formula F[«] is a 2CNF formula.

Here, F'[] is obtained by removing all clauses containing a literal set to 1 by «,
and removing the literals set to 0 from all remaining clauses.
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2CNF-BACKDOOR EVALUATION Il

2CNF-BACKDOOR EVALUATION
Input: A CNF formula F' and a 2CNF-backdoor B of F
Parameter: &k = |B|
Question: Is F' satisfiable?

Note: the problem is FPT by trying all assignments to B and evaluating the
resulting formulas.
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2CNF-BACKDOOR EVALUATION Il

Theorem 24

2CNF-BACKDOOR EVALUATION has no polynomial kernel unless
NP C coNP/poly.

Proof.

We give a polynomial parameter transformation from var-SAT to
2CNF-BACKDOOR EVALUATION.

Let F' be an instance for var-SAT.

Then, (F, B = var(F)) is an equivalent instance for 2CNF-BACKDOOR
EVALUATIONwith |B| < |var(F)|. O

| A
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Exercise

PATH PACKING
Input: A graph G and an integer k
Parameter: k
Question: Are there k pairwise vertex-disjoint paths of length at least &
each?

@ Show that PATH PACKING has no polynomial kernel unless NP C coNP /poly.

Hint: Compositions seem challenging.
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Solution
PATH PACKING has no polynomial kernel unless NP C coNP /poly. l

Proof.

We give a polynomial parameter transformation from LONG PATHto PATH
PACKING.

Given an instance (G, k) to LONG PATHwe construct a graph G’ from G by
adding k& — 1 vertex-disjoint paths of length &.

Now, GG contains a path of length % if and only if G’ contains k vertex-disjoint
paths of length k. O

vy
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Outline

@ Further Reading
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Further Reading

o Chapter 15, Lower bounds for kernelization in
Marek Cygan, Fedor V. Fomin, tukasz Kowalik, Daniel Lokshtanov, Déniel
Marx, Marcin Pilipczuk, MichatPilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

o Chapter 30 (30.1-30.4), Kernelization Lower Bounds in
Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.

o Neeldhara Misra, Venkatesh Raman, and Saket Saurabh. Lower bounds on
kernelization. Discrete Optimization 8(1): 110-128 (2011).
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