NOTES ON CRYPTARITHM SOLVER AND PERMUTATIONS

ERIC MARTIN

1. HEAP’S ALGORITHM

Let a nonzero natural number n be given. Heap’s algorithm generates all permutations of a set S with n 4+ 1 elements,
in such a way that any permutation, the first one excepted, is obtained from the previous one by exchanging two of S’s
elements. Without loss of generality, take for S the set {0,1,...,n}. The recursive version of Heap’s algorithm can be
illustrated as follows.

0 mo
all all '\ all
. n . : Mp—2 .
permutations permutations permutations
of the first of the first of the first
n numbers n numbers n numbers
n—1
/ / /
n mo my Mp—1

So the algorithm generates all permutations of the form L x n, then all permutations of the form L x mg, then all

permutations of the form L xmq, ...

{mo,my, ..

, and eventually all permutations of the form L x m,_1. The scheme is correct if
,mp_1} ={0,...,n—1}: at every stage, the algorithm has to select a new number from the first n ones (and

exchange it with the current (n 4 1)st number). Heap’s algorithm uses the following strategy:

e In case n is odd, select the first number, then the second number, then the third number. . .
e In case n is even, always select the first number.

The following diagram illustrates with n = 3.

——0—0—9— 90— ¢ — 90— 0 09— ——— 00— —————0—0——
e
.
0 1 2 0 1 2 3 1 0 3 1 0O 0 2 3 0 2 3 3 2 1 3 2 1
1 0 0 2 2 1 1 3 3 0 0 1 2 0 0o 3 3 2 2 3 3 1 1 2
2 2 1 1 0 0 0 O 1 1 3 3 3 3 2 2 0 0 1 1 2 2 3 3
3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 0 O 0o 0 O 0

Note that starting with (0, 1,2,3), Heap’s algorithm produces (1,2,3,0) as last permutation. We will see that starting
with (0,1,2,3,4,5), it would produce (3,4,1,2,5,0) as last permutation; starting with (0,1, 2, 3,4, 5,6, 7), it would produce
(5,6,1,2,3,4,7,0) as last permutation. More generally, starting with (0,1,2,...,2n + 1), Heap’s algorithm will produce
as last permutation (2n —1,2n,1,2,...,2n —2,2n+ 1,0).

Note that starting with (0,1,2), Heap’s algorithm produces (2,1,0) as last permutation. We will see that starting
with (0,1,2,3,4), it would produce (4,1,2,3,0) as last permutation; starting with (0,1,2,3,4,5,6), it would produce
(6,1,2,3,4,5,0) as last permutation. More generally, starting with (0,1,2,...,2n), Heap’s algorithm will produce as last
permutation (2n,1,2,...,2n —1,0).

The previous formulas can be used to generalise Heap’s algorithm and generate all sequences of k£ numbers chosen from
{0,1,...,n}: when the last number has been selected, and the penultimate number has been selected, ..., and the

Date: Session 2, 2015.



2

ERIC MARTIN

(n — k 4+ 1)st number has been selected, it suffices to stop the recursion and “simulate” all permutations of the remaining
n + 1 — k numbers by applying those formulas.

The following is a possible implementation of Heap’s algorithm.

def permute(L):
for L in heap_permute(L, len(L)):

yield L

def heap_permute(L, length):
if length = 1:

yield L

else:

length —= 1
for i in range(length):
for L in heap_permute(L, length):
yield L
if length % 2:
L{i], L[length] = L[length], L[i]
else:
L[0], L[length] = L[length], L[0]
for L in heap_permute (L, length):
yield L

2. PROOF OF CORRECTNESS

We prove that Heap’s algorithm is correct and that moreover, the following holds for all n > 1:

(1)

(2)

starting with (0,1,2,...,2n), all permutations of (0,1,2,...,2n) are generated, ending in
(2n,1,2,...,2n —1,0)
starting with (0,1,2,...,2n + 1), all permutations of (0,1,2,...,2n + 1) are generated, ending in
(2n—1,2n,1,2,...,2n — 2,2n+ 1,0)

Proof is by induction. The base case n = 1 is straightforward, so let n > 1 be given, and assume that (1) holds. We show
that (2) holds too.

Starting from (0,1,2,...,2n —1,2n) x2n+ 1, Heap’s algorithm generates all permutations of the form L x2n+ 1,
ending with (2n,1,2,...,2n —1,0) *2n + 1.

Permuting first and last elements, (2n,1,2,...,2n —1,0) x 2n + 1 is changed to (2n +1,1,2,...,2n — 1,0) % 2n.
Starting from (2n 4+ 1,1,2,...,2n — 1,0) * 2n, the algorithm then generates all permutations of the form L * 2n,
ending with (0,1,2,...,2n —1,2n+ 1) x 2n.

Permuting second and last elements, (0,1,2,...,2n —1,2n+ 1) x2n is changed to (0,2n,2,...,2n—1,2n+ 1) * 1.
Starting from (0,2n,2,...,2n — 1,2n 4+ 1) * 1, the algorithm then generates all permutations of the form L * 1,
ending with (2n+ 1,2n,2,...,2n —1,0) % 1.

Permuting third and last elements, (2n+1,2n,2,...,2n —1,0) %1 is changed to (2n+1,2n,1,3...,2n—1,0) x 2.
Starting from (2n 4+ 1,2n,1,3...,2n — 1,0) x 2, the algorithm then generates all permutations of the form L x 2,
ending with (0,2n,1,3...,2n —1,2n 4+ 1) x 2.

Permuting fourth and last elements, (0,2n,1,3...,2n—1,2n+1)*2 is changed to (2n+1,2n,1,2...,2n—1,0)*3.
Starting from (2n+1,2n,1,2...,2n—1,0)%3, the algorithm then generates all permutations of the form L*3. .. till
all permutations of the form L x 2n — 1, ending in (2n +1,2n,1,2,...,2n — 2,0) x 2n — 1.

Permuting last two elements, (2n+1,2n,1,2,...,2n—2,0)*2n—1 is changed to (2n+1,2n,1,2,...,2n—2, 2n—1)*0.
Starting from (2n+ 1,2n,1,2,...,2n — 2,2n — 1) % 0, the algorithm then generates all permutations of the form
L %0, ending with (2n —1,2n,1,2,...,2n —2,2n+ 1) x 0.

So we have established that (2) holds.

Now assume that (2) holds. We show that (1) with n replaced by n 4+ 1 holds too. The inner circle of the following
diagram shows how elements move from one position to another one after all permutations of a list consisting of the 2n+2



NOTES ON CRYPTARITHM SOLVER AND PERMUTATIONS 3

numbers 0, ..., 2n + 1 have been performed by Heap’s algorithm. For instance, the first element ends up as the last
element, moving from position (index) 0 and eventually ending up at position (index) 2n + 1. After all permutations of
(0,1,2,...,2n,2n + 1) have been generated, ending in (2n — 1,2n,1,2,...,2n — 2,2n + 1,0), so after all permutations
of (0,1,2,...,2n,2n 4+ 1) x 2n + 2 have been generated, ending in (2n — 1,2n,1,2,...,2n — 2,2n + 1,0) * 2n + 2, Heap’s
algorithm replaces the element now at position 0, that is, 2n — 1 (originally at position 2n — 1), with 2n + 2. This is
depicted in the following diagram with 2n 4+ 2 on the outer circle facing 2n — 1 on the inner circle. At the end of each of
the following stages, the algorithm permutes the element currently at position 0 with the element currently at position
2n+2, that is, the element at position 0 at the end of previous stage. Hence as illustrated in the diagram, move to position

2n + 2: first 2n — 1 replaced by 2n + 2, then 2n — 2 replaced by 2n — 1, ..., then 2 replaced by 3, then 1 replaced by 2,
then 2n replaced by 1, then 2n + 1 replaced by 2n, and eventually 0 replaced by 2n + 1. Finally, all permutations of the
numbers then at position 0, ..., 2n + 1 (those numbers being 1, 2, ..., 2n 4 2) are generated, corresponding to a last,

(2n + 2)nd rotation in the following diagram, hence a rotation following a “full circle”. This means that:

e ends up at position 0 the element which at the beginning of this last round of permutations, is a position 2n — 1,
that is, 2n + 2,

e ends up at position 1 the element which at the beginning of this last round of permutations, is a position 2n, that
is, 1,

o ...

resulting in the final list (2n +2,1,2,3,...,2n — 1,2n,2n 4+ 1) * 0. So we have established that (1) with n replaced by
n + 1 holds.

2 2n 2n

~
1/ om+1

/ \

3 2 0 2n+1

N~

2n —1
™~ >
2n—2 2n + 2

2n —1

3. NOTES ON THE IMPLEMENTATION OF THE CRYPTARITHM SOLVER

The first version is a minor adaptation of code written by Raymond Hettinger as part of ActiveState Code Recipes. It uses
the permutations function, imported from itertools (and also the findall function, imported from re). The second
version does not import anything.

The first version filters out the permutations that assign 0 to one of the letters that start a word; the second version does
not produce those permutations. The first version creates a string where the letters starting a word come first, followed
by the letters not starting a word; it is the other way around for the second version. For instance, with the cryptarithm
SEND + MORE == MONEY, the first version creates a string which could be SMENDORY, whereas the second version creates a
string which could be ENDORYSM. Let us still use that example to explain how we proceed in the second version.

e Starting with the list L = (0,1, 2,3,4,5,6,7,8,9), we use the generalisation of Heap’s algorithm to generate lists
of the form LjLs, one for each possible list Ly of two nonzero digits (so we ignore 0, as if L started with the
element of index 1). This determines a possible assignment to SM.

e For each list of the form L, Lo generated as described, we make a copy of L1 Ly and we use again the generalisation
of Heap’s algorithm to generate from the copy lists of the form Ly1Li2Lo, one for each possible list Lis of six
digits, amongst those in Ly (so 0 is now allowed but we ignore Lo, as if we were working with a list that ended at
index 7). We return the last 8 digits of LijLqoLs, that is, L1aLs, allocating the digits in L1 to ENDORY and the
digits in Lo to SM.

COMP9021 PRINCIPLES OF PROGRAMMING


http://code.activestate.com/recipes/576615-alphametics-solver/

	1. Heap's algorithm
	2. Proof of correctness
	3. Notes on the implementation of the cryptarithm solver

