Recursion

COMP1927 16x1

Sedgewick Chapter 5

Recursive Functions

® problems can sometimes be expressed in
terms of a simpler instance of the same
problem

® Example: factorial

® 11 —1
®
2 H1¥2 21=11*2
[) .-’
¢ (N-l)I 1*2*3*.. *(Nl)
))

N! —1 2*3%*.. *(Nl)*N N|—(N 1)|*

lllllllllllllllllllllllllllllll

Recursive Functions

® Solving problems recursively in a program
Involves

® Developing a function that calls itself
® Must include

® Base Case: aka stopping case: so easy no
recursive call Is needed

® Recursive Case: calls the function on a ‘smaller’
version of the problem

Iteration vs Recursion

* ComputenN! =1 * 2 * 3 * ... * N

//An iterative solution
int factorial (int N) {
result = 1;
for (1 = 1; 1 <= N; 1i++)
result = 1 * result;
return result;

J

* Alternative Solution: factorial calls itself recursively

int factorial (int N) {
if (N == 1) {
edtmrE O base case

} else {

return N * factorial (N-1); precursive case
} J

Bad Fibonacci

Sometimes recursive code results in horribly in-efficient
code that re-evaluates things over and over.

2" calls: O(k") - exponential

Exponential functions can only be used In practice for
very small values of n

//Code to return the nth fibonacci number
//0 1 1 2 3 5 8 13 21
int badFib (int n) {

1f(n == 0) return O0;

1f(n == 1) return 1;

return badFib(n-1) + badFib (n-2);

tree has n levels

Why badFib Is bad

® Tracing calls on BadFib produces a tree of calls where intermediate
results are recalculated again and again.

>

F(3) is evaluated threef----.___ (F(6))

Ve €Oy

times independently *~ @

-"'--__‘ -
l-._‘_' -‘-"-_
"‘..‘___ l""-._
-
=

D GeD @) o € @ €@
@ E(1) E(1) €Y 1@ 1@ €1 €Eop

Linked Lists

A linked list can be described recursively
® Alistis comprised of a
® head (a node)

® atail (the rest of the list)

typedef struct node * link;

struct node({
int 1tem;
link next;

I g

Recursive List Functions

® We can define some list operations as recursive
functions:

® length: return the length of a list
® sumOfElems: return the length of a list
® printList: print the list

® printListReverse: print out the list in reverse order

® Recursive list operations are not useful for huge lists

® The depth of recursion may be proportional to the
length of the list

Recursive List Functions

int length (link 1ls) {
1f (ls == NULL

) { }b
return 0; ase Case
}

| EermEm L deageh (1sonext) }recursive case

int sumOfElems (link 1s) {

1f (ls == NULL

) |
return 0; base case

}

return (ls->item + sumOfElems (ls->next)); recurS|Ve case
}

Recursive List Functions

vold printlList(link 1s) {
1f(ls !'= NULL) {
printf (“%d\n"“, 1s->item) ;
printList (1s->next) ;

//To print in reverse change the
//order of the recursive call and
//the printf
vold printListReverse(link 1s) {
if(ls != NULL) {
printListReverse (1ls->next) ;
printf (“%d\n“,ls->item) ;

Divide and Conquer

Basic ldea:

® divide the input into two parts

® solve the problems recursively on both parts

® combine the results on the two halves into an overall
solution

Divide and Conquer

Divide and Conquer Approach for finding maximum in an
unsorted array:

® Divide array in two halves in each recursive step
Base case
® subarray with exactly one element: return it
Recursive case
® split array into two
® find maximum of each half
® return maximum of the two sub-solutions

Iterative solution

//iterative solution O (n)
int maximum(int al], 1nt n) {
int a[N];
1nt max =
int 1;
for (1=0; 1 < n; 1++){
1f (a[1] > max) {
max = al[1i];

al0];

J
J

return max;

Divide and Conguer Solution

//Divide and congquer recursive solution
int max (int al[], i1nt 1, int r) {

int ml, m2;

int m = (l4+r)/2;

1f (1==r) {

return afll];
}
//find max of left half

ml = max (a,l,m):;
//find max of right half
m2 = max (a, m+l, r)

//combine results to get max of both halves
1f (ml < m2) {

return mZ;
} else {
return ml;

Complexity Analysis

How many calls of max are necessary for the divide
and conguer maximum algorithm?

® Length=1
1: =1

® Length=N>1
IN=1TN/p2+ TN+ 1

® OQverall, we have
IN=N+1

In each recursive call, we have to do a fixed number of
steps (independent of the size of the argument)

* O(N)

Recursive Binary Search

Maintain two indices, | and r, to denote leftmost and
rightmost array index of current part of the array

® Jinitially I=0 and r=N-1
Base cases:
® array is empty, element not found
® a[(I+r)/2] holds the element we're looking for
Recursive cases: a[(I+r)/2] Is
® Jlarger than element, continue search on a[l]..a[(I+r)/2-1]

® smaller than element, continue search on a[(l+r)/2+1]..a][r]
O(log(n))

