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Recursive Functions
• problems can sometimes be expressed in 

terms of a simpler instance of the same 

problem

• Example: factorial

• 1!       = 1

• 2!       = 1 * 2

• ...

• (N-1)! = 1 * 2 * 3 * ... * (N-1)

• N!      = 1 * 2 * 3 * ... * (N-1) * N

2! = 1! * 2

N! = (N-1)! * N



Recursive Functions

• Solving problems recursively in a program 

involves

• Developing a function that calls itself

• Must include

• Base Case: aka stopping case: so easy no 

recursive call is needed

• Recursive Case: calls the function on a ‘smaller’ 

version of the problem



Iteration vs Recursion
• Compute N! = 1 * 2 * 3 * .... * N

//An iterative solution 

int factorial(int N){

result = 1; 

for (i = 1; i <= N; i++)

result = i * result; 

return result;

}

• Alternative Solution: factorial calls itself recursively

int factorial (int N) {

if (N == 1) {

return 1;

} else {

return N * factorial (N-1);

}

}

base case

recursive case



Bad Fibonacci

• Sometimes recursive code results in horribly in-efficient 

code that re-evaluates things over and over.

• 2n calls: O(kn) - exponential 

• Exponential functions can only be used in practice for 

very small values of n

//Code to return the nth fibonacci number

//0 1 1 2 3 5 8 13 21 

int badFib(int n){

if(n == 0) return 0;

if(n == 1) return 1;

return badFib(n-1) + badFib(n-2);

}



Why badFib is bad
• Tracing calls on BadFib produces a tree of calls where intermediate 

results are recalculated again and again.



Linked Lists
A linked list can be described recursively 

• A list is comprised of a 

• head (a node)

• a tail (the rest of the list)

typedef struct node * link;

struct node{

int item;

link next;

};



Recursive List Functions
• We can define some list operations as recursive 

functions:

• length: return the length of a list

• sumOfElems: return the length of a list

• printList: print the list

• printListReverse: print out the list in reverse order

• Recursive list operations are not useful for huge lists

• The depth of recursion may be proportional to the 

length of the list



Recursive List Functions
int length (link ls) {

}

base case

recursive case

int sumOfElems (link ls) {

if (ls == NULL) {

}   

}

base case

recursive case

return 1 + length (ls->next);

return 0;

return (ls->item + sumOfElems(ls->next));

return 0;

if (ls == NULL) {

}



Recursive List Functions
void printList(link ls){

if(ls != NULL){

printf(“%d\n“,ls->item);

printList(ls->next);  

}

}

//To print in reverse change the 

//order of the recursive call and 

//the printf

void printListReverse(link ls){

if(ls != NULL){       

printListReverse(ls->next);

printf(“%d\n“,ls->item);   

}

}



Divide and Conquer
Basic Idea:

• divide the input into two parts

• solve the problems recursively on both parts

• combine the results on the two halves into an overall 

solution



Divide and Conquer

Divide and Conquer Approach for finding maximum in an 

unsorted array:

• Divide array in two halves in each recursive step

Base case

• subarray with exactly one element: return it

Recursive case

• split array into two

• find maximum of each half

• return maximum of the two sub-solutions



Iterative solution

//iterative solution O(n)

int maximum(int a[], int n){

int a[N];            

int max = a[0];     

int i;

for (i=0; i < n; i++){

if (a[i] > max){

max = a[i];

}

}

return max;

}



Divide and Conquer Solution
//Divide and conquer recursive solution

int max (int a[], int l, int r) {

int m1, m2;

int m = (l+r)/2;

if (l==r) {

return a[l];

}

//find max of left half

m1 = max (a,l,m);

//find max of right half

m2 = max (a, m+1, r)

//combine results to get max of both halves

if (m1 < m2) {

return m2;

} else {

return m1;

}

}



Complexity Analysis
How many  calls of max are necessary for the divide 

and conquer maximum algorithm?

• Length = 1

T1 = 1

• Length = N > 1

TN = TN/2 + TN/2 + 1

• Overall, we have

TN = N + 1

In each recursive call, we have to do a fixed number of 

steps (independent of the size of the argument)

• O(N)



Recursive Binary Search

Maintain two indices, l and r, to denote leftmost and 

rightmost array index of current part of the array

• initially l=0 and r=N-1

Base cases:

• array is empty, element not found

• a[(l+r)/2] holds the element we’re looking for

Recursive cases: a[(l+r)/2] is

• larger than element, continue search on a[l]..a[(l+r)/2-1]

• smaller than element, continue search on a[(l+r)/2+1]..a[r]

O(log(n))


