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SEARCHING

 Storing and searching sorted data:

 Dilemma: Inserting into a sorted sequence

 Finding the insertion point on an array – O(log 

n) but then we have to move everything along 

to create room for the new item

 Finding insertion point on a linked list O(n) but 

then we can add the item in constant time.

 Can  we get the best of both worlds?



TREE TERMINOLOGY

 Trees are branched data structures consisting of 

nodes and links (edges), with no cycles 

 each node contains a data value 

 each node has links to ≤ k other nodes (k=2

below) 



TREES AND SUBTREES

 Trees can be viewed as a set of nested structures: 

each node has k possibly empty subtrees 



USES OF TREES

 Trees are used in many contexts, e.g. representing 

hierarchical data structures (e.g. expressions) 

 efficient searching (e.g. sets, symbol tables, ...) 



SPECIAL PROPERTIES OF SOME TREES

 M-ary tree: each internal node has exactly M 

children

 Ordered tree: constraints on the data/keys in the 

nodes

 Balanced tree: a tree with a minimal height for a 

given number of nodes

 Degenerated tree: a tree with the maximal height for 

a given number of nodes



BINARY TREES

 For much of this course, we focus on binary 

trees (k=2) Binary trees can be defined 

recursively, as follows: 

 A binary tree is either 

 empty (contains no nodes) 

 consists of a node, with two subtrees 

each node contains a value 

 the left and right subtrees are binary trees



…TREE TERMINOLGY

 Node level or depth = path length from root to node 

 Depth of the root is 0

 Depth of  a node is one higher than the level of its parent

 We call the length of the  longest path from the root to a 

node the height of a tree
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BINARY TREES: PROPERTIES

 A binary tree with n nodes has a height of

 at most 

n-1 (if degenerate) 

 at least 

 floor(log2(n)) (if balanced)

These properties are important to estimate the 

runtime complexity of tree algorithms! 

log2 10 3

log2 100 6

log2 1000 9

log2 10000 13

log2 100000 16



EXAMPLES OF BINARY SEARCH TREES: 

 Shape of tree is determined by the order of insertion



EXERCISE: INSERTION INTO BSTS

 For each of the sequences below start from an 

initially empty binary search tree 

 show the tree resulting from inserting the values in the 

order given 

 What is the height of each tree?

 (a) 4 2 6 5 1 7 3 

 (b) 5 3 6 2 4 7 1 

 (c) 1 2 3 4 5 6 7 



BINARY TREES IN C

A binary tree is a generalisation of a linked list:

 nodes are a structure with two links to nodes

 empty trees are NULL links

typedef struct treenode *Treelink;

struct treenode {

int data;

Treelink left, right;

}



SEARCHING IN BSTS

 Recursive version 
// Returns non-zero if item is found,
// zero otherwise
int search(TreeLink n, Item i){

int result;
if(n == NULL){

result =  0;
}else if(i < n->data){

result = search(n->left,i);
}else if(i > n->data)

result = search(n->right,i);
}else{ // you found the item 

result = 1;
}
return result;

} 

* Exercise: Try writing an iterative version



INSERTION INTO A BST

 Cases for inserting value V into tree T: 

 T is empty, make new node with V as root of new tree 

 root node contains V, tree unchanged (no dups) 

 V < value in root, insert into left subtree (recursive) 

 V > value in root, insert into right subtree (recursive) 

 Non-recursive insertion of V into tree T: 

 search to location where V belongs, keeping parent 

 make new node and attach to parent 

 whether to attach L or R depends on last move 



BINARY TREES: TRAVERSAL

 For trees, several well-defined visiting orders exist: 

 Depth first traversals

preorder (NLR) ... visit root, then left subtree, then 

right subtree 

inorder (LNR) ... visit left subtree, then root, then 

right subtree 

postorder (LRN) ... visit left subtree, then right 

subtree, then root 

 Breadth-first traversal or level-order ... visit root, then 

all its children, then all their children 



EXAMPLE OF TRAVERSALS ON A BINARY TREE

 Pre-Order: 4 2 1 3 8 6 9

 In-Order: 1 2 3 4 6 8 9

 Post-Order 1 3 2 6 9 8 4

 Level-Order: 4 2 8 1 3 6 8



DELETION FROM BSTS

 Insertion into a binary search tree is easy:

 find location in tree where node to be added 

 create node and link to parent 

Deletion from a binary search tree is harder: 

 find the node to be deleted and its parent 

 unlink node from parent and delete 

 replace node in tree by ... ??? 



DELETION FROM BSTS…

 Easy option ... don't delete; just mark node as 

deleted 

 future searches simply ignore marked nodes 

 If we want to delete, three cases to consider ...

 zero subtrees ... unlink node from parent 

 one subtree ... replace node by child 

 two subtrees ... two children; one link in parent 



DELETION FROM BSTS

 Case 1: value to be deleted is a leaf (zero subtrees) 



DELETION FROM BSTS

 Case 1: value to be deleted is a leaf (zero subtrees) 



DELETION FROM BSTS

 Case 2: value to be deleted has one subtree 



DELETION FROM BSTS

 Case 2: value to be deleted has one subtree 



DELETION FROM BSTS

 Case 3a: value to be deleted has two subtrees 

 Replace deleted node by its immediate successor

 The smallest (leftmost) node in the right subtree 



DELETION FROM BSTS

 Case 3a: value to be deleted has two subtrees 



BINARY SEARCH TREE PROPERTIES

 Cost for searching/deleting:

 Worst case: key is not in BST – search the height of 

the tree

Balanced trees – O(log2n)

Degenerate trees – O(n)

 Cost for insertion:

 Always traverse the height of the tree

Balanced trees – O(log2n)

Degenerate trees – O(n)


