SEARCHING AND TREES

o COMP1927 Computing 16x1
o Sedgewick Chapters 5, 12



SEARCHING

o Storing and searching sorted data:
o Dilemma: Inserting into a sorted seguence

e Finding the insertion point on an array — O(log
n) but then we have to move everything along
to create room for the new item

e Finding insertion point on a linked list O(n) but
then we can add the item In constant time.

o Can we get the best of both worlds?



TREE TERMINOLOGY

o Trees are branched data structures consisting of
nodes and links (edges), with no cycles

o each node contains a data value
o each node has links to < k other nodes (k=2
below)
root —
iﬂternal_ | Internal
node ™~ node




TREES AND SUBTREES

o Trees can be viewed as a set of nested structures:
each node has k possibly empty subtrees

Left subtree Right subtree



USES OF TREES

o Trees are used in many contexts, e.g. representing
hierarchical data structures (e.g. expressions)

o efficient searching (e.qg. sets, symbol tables, ...)

Search Tree Expression Tree



SPECIAL PROPERTIES OF SOME TREES

o M-ary tree: each internal node has exactly M
children

o Ordered tree: constraints on the data/keys in the
nodes

o Balanced tree: a tree with a minimal height for a
given number of nodes

o Degenerated tree: a tree with the maximal height for
a given number of nodes



BINARY TREES

o For much of this course, we focus on binary
trees (k=2) Binary trees can be defined
recursively, as follows:

o A binary tree Is elther
e empty (contains no nodes)
e consists of a node, with two subtrees

each node contains a value
the left and right subtrees are binary trees



... |REE TERMINOLGY

o Node level or depth = path length from root to node
e Depth of the root is O
e Depth of a node is one higher than the level of its parent

o We call the length of the longest path from the root to a
node the height of a tree

root —_

| .
@‘\ | evel O
g

8 | evel 1

| evel 2



BINARY TREES: PROPERTIES
o A binary tree with n nodes has a height of

e at most
n-1 (if degenerate)
e atleast log, 10 3
floor(logz(n)) (if balanced) log, 100 6
log, 1000 9
log, 10000 13
log, 100000 16

These properties are important to estimate the
runtime complexity of tree algorithms!



EXAMPLES OF BINARY SEARCH TREES:

o Shape of tree is determined by the order of insertion

Balanced Tree Non-balanced Tree




EXERCISE: INSERTION INTO BSTS

o For each of the sequences below start from an
initially empty binary search tree

e show the tree resulting from inserting the values in the
order given

 What is the height of each tree?

o(a) 4 2 6 51 7 3
o(b) 5 3 6 2 4
5

7 1
o(c) 1 2 3 456 7



BINARY TREES IN C

A binary tree Is a generalisation of a linked list:
e nodes are a structure with two links to nodes

e empty trees are NULL links

typedef struct treenode *Treelink;

struct treenode {
Int data;
Treelink left, right;

}



SEARCHING IN BSTs

o Recursive version
// Returns non-zero if item is found,
// zero otherwise
int search (Treelink n, Item 1) {
int result;

1f(n == NULL) {
result = 0;
telse 1f (1 < n->data) {
result = search(n->left,1);
lelse 1f (1 > n—->data)
result = search(n->right,1);
lelse{ // you found the item
result = 1;

J

return result;

}
* Exercise: Try writing an Iterative version



INSERTION INTO A BST

o Cases for inserting value V into tree T:
e T Is empty, make new node with V as root of new tree
e root node contains V, tree unchanged (no dups)
e V <value in root, insert into left subtree (recursive)
e V >value in root, insert into right subtree (recursive)

o Non-recursive insertion of V into tree T.:
e search to location where V belongs, keeping parent
 make new node and attach to parent
e whether to attach L or R depends on last move




BINARY TREES:. TRAVERSAL

o For trees, several well-defined visiting orders exist:
e Depth first traversals

preorder (NLR) ... visit root, then left subtree, then
right subtree

iInorder (LNR) ... visit left subtree, then root, then
right subtree

postorder (LRN) ... visit left subtree, then right
subtree, then root

e Breadth-first traversal or level-order ... visit root, then
all its children, then all their children



EXAMPLE OF TRAVERSALS ON A BINARY TREE

o Pre-Order: 42138609
oIn-Order: 1234689

o Post-Order 1326984
o Level-Order: 4281368

Left subtree Right subtree



DELETION FROM BSTS

o Insertion Into a binary search tree is easy:

e find location in tree where node to be added
e create node and link to parent

o Deletion from a binary search tree iIs harder:
e find the node to be deleted and its parent
e unlink node from parent and delete
e replace node in tree by ... ???



DELETION FROM BSTS...

o Easy option ... don't delete; just mark node as
deleted

e future searches simply ignore marked nodes
o If we want to delete, three cases to consider ...
e zero subtrees ... unlink node from parent
e one subtree ... replace node by child
e fwo subtrees ... two children; one link In parent



DELETION FROM BSTS

o Case 1: value to be deleted Iis a leaf (zero subtrees)

delete Kk ... °



DELETION FROM BSTS

o Case 1: value to be deleted Iis a leaf (zero subtrees)

deleted Kk ...




DELETION FROM BSTS

o Case 2: value to be deleted has one subtree

delete p ... o



DELETION FROM BSTS

o Case 2: value to be deleted has one subtree

deleted p ... o



DELETION FROM BSTS

o Case 3a: value to be deleted has two subtrees

o Replace deleted node by Iits immediate successor
e The smallest (leftmost) node In the right subtree

delete m ...



DELETION FROM BSTS

o Case 3a: value to be deleted has two subtrees

deleted m (v2) ...




BINARY SEARCH TREE PROPERTIES

o Cost for searching/deleting:

e \Worst case: key is not In BST — search the height of
the tree

oBalanced trees — O(log,n)
o Degenerate trees — O(n)
o Cost for insertion:
e Always traverse the height of the tree
oBalanced trees — O(log,n)
o Degenerate trees — O(n)



