
SEARCHING AND TREES

COMP1927 Computing 16x1

Sedgewick Chapters 5, 12

SEARCHING

 Storing and searching sorted data:

 Dilemma: Inserting into a sorted sequence

 Finding the insertion point on an array – O(log

n) but then we have to move everything along

to create room for the new item

 Finding insertion point on a linked list O(n) but

then we can add the item in constant time.

 Can we get the best of both worlds?

TREE TERMINOLOGY

 Trees are branched data structures consisting of

nodes and links (edges), with no cycles

 each node contains a data value

 each node has links to ≤ k other nodes (k=2

below)

TREES AND SUBTREES

 Trees can be viewed as a set of nested structures:

each node has k possibly empty subtrees

USES OF TREES

 Trees are used in many contexts, e.g. representing

hierarchical data structures (e.g. expressions)

 efficient searching (e.g. sets, symbol tables, ...)

SPECIAL PROPERTIES OF SOME TREES

 M-ary tree: each internal node has exactly M

children

 Ordered tree: constraints on the data/keys in the

nodes

 Balanced tree: a tree with a minimal height for a

given number of nodes

 Degenerated tree: a tree with the maximal height for

a given number of nodes

BINARY TREES

 For much of this course, we focus on binary

trees (k=2) Binary trees can be defined

recursively, as follows:

 A binary tree is either

 empty (contains no nodes)

 consists of a node, with two subtrees

each node contains a value

 the left and right subtrees are binary trees

…TREE TERMINOLGY

 Node level or depth = path length from root to node

 Depth of the root is 0

 Depth of a node is one higher than the level of its parent

 We call the length of the longest path from the root to a

node the height of a tree

8

BINARY TREES: PROPERTIES

 A binary tree with n nodes has a height of

 at most

n-1 (if degenerate)

 at least

 floor(log2(n)) (if balanced)

These properties are important to estimate the

runtime complexity of tree algorithms!

log2 10 3

log2 100 6

log2 1000 9

log2 10000 13

log2 100000 16

EXAMPLES OF BINARY SEARCH TREES:

 Shape of tree is determined by the order of insertion

EXERCISE: INSERTION INTO BSTS

 For each of the sequences below start from an

initially empty binary search tree

 show the tree resulting from inserting the values in the

order given

 What is the height of each tree?

 (a) 4 2 6 5 1 7 3

 (b) 5 3 6 2 4 7 1

 (c) 1 2 3 4 5 6 7

BINARY TREES IN C

A binary tree is a generalisation of a linked list:

 nodes are a structure with two links to nodes

 empty trees are NULL links

typedef struct treenode *Treelink;

struct treenode {

int data;

Treelink left, right;

}

SEARCHING IN BSTS

 Recursive version
// Returns non-zero if item is found,
// zero otherwise
int search(TreeLink n, Item i){

int result;
if(n == NULL){

result = 0;
}else if(i < n->data){

result = search(n->left,i);
}else if(i > n->data)

result = search(n->right,i);
}else{ // you found the item

result = 1;
}
return result;

}

* Exercise: Try writing an iterative version

INSERTION INTO A BST

 Cases for inserting value V into tree T:

 T is empty, make new node with V as root of new tree

 root node contains V, tree unchanged (no dups)

 V < value in root, insert into left subtree (recursive)

 V > value in root, insert into right subtree (recursive)

 Non-recursive insertion of V into tree T:

 search to location where V belongs, keeping parent

 make new node and attach to parent

 whether to attach L or R depends on last move

BINARY TREES: TRAVERSAL

 For trees, several well-defined visiting orders exist:

 Depth first traversals

preorder (NLR) ... visit root, then left subtree, then

right subtree

inorder (LNR) ... visit left subtree, then root, then

right subtree

postorder (LRN) ... visit left subtree, then right

subtree, then root

 Breadth-first traversal or level-order ... visit root, then

all its children, then all their children

EXAMPLE OF TRAVERSALS ON A BINARY TREE

 Pre-Order: 4 2 1 3 8 6 9

 In-Order: 1 2 3 4 6 8 9

 Post-Order 1 3 2 6 9 8 4

 Level-Order: 4 2 8 1 3 6 8

DELETION FROM BSTS

 Insertion into a binary search tree is easy:

 find location in tree where node to be added

 create node and link to parent

Deletion from a binary search tree is harder:

 find the node to be deleted and its parent

 unlink node from parent and delete

 replace node in tree by ... ???

DELETION FROM BSTS…

 Easy option ... don't delete; just mark node as

deleted

 future searches simply ignore marked nodes

 If we want to delete, three cases to consider ...

 zero subtrees ... unlink node from parent

 one subtree ... replace node by child

 two subtrees ... two children; one link in parent

DELETION FROM BSTS

 Case 1: value to be deleted is a leaf (zero subtrees)

DELETION FROM BSTS

 Case 1: value to be deleted is a leaf (zero subtrees)

DELETION FROM BSTS

 Case 2: value to be deleted has one subtree

DELETION FROM BSTS

 Case 2: value to be deleted has one subtree

DELETION FROM BSTS

 Case 3a: value to be deleted has two subtrees

 Replace deleted node by its immediate successor

 The smallest (leftmost) node in the right subtree

DELETION FROM BSTS

 Case 3a: value to be deleted has two subtrees

BINARY SEARCH TREE PROPERTIES

 Cost for searching/deleting:

 Worst case: key is not in BST – search the height of

the tree

Balanced trees – O(log2n)

Degenerate trees – O(n)

 Cost for insertion:

 Always traverse the height of the tree

Balanced trees – O(log2n)

Degenerate trees – O(n)

