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WARM UP EXERCISE: HANDSHAKE PROBLEM

 In a room of n people, how many different 

handshakes are possible?

 0 + 1 + 2 + … + (n-1)

 Using Maths formula:

 1 + 2 + … n = (n(n+1))/2

 Answer: ((n-1)n)/2 = (n^2-n)/2

 O(n^2)



THE PROBLEM OF SORTING

 Sorting involves arranging a collection of items in 

order

 Based on a key

 Using an ordering relation on that key

 We will look at different algorithms that all solve this 

problem

 Which is better?

 How can we compare them?

 How can we classify them?



COMPARING SORTING ALGORITHMS

 In analysing sorting algorithms:

 Worst case time complexity

 C = number of comparisons between items

 S = number of times items are swapped

 Cases to consider for initial ordering of items. What 

is the worst case for the given algorithm?

 random order?

 sorted order?

 reverse sorted order?

 sometimes specific non-random, non-ordered 

permutations?



COMPARING SORTING ALGORITHMS

 Adaptive vs non-adaptive sort:

Non-adaptive sort (aka oblivious sort) uses the same 

sequence of operations, independent of input data

Adaptive sort varies sequences of operations, depending 

on the outcome of the comparisons.
★ can take advantage of existing order already present in the 

sequence

 Stable vs non-stable sort:

 Stable sorting methods preserve the relative order of 

items with duplicate key

Non-stable sorting methods may change the relative 

order of items with duplicate keys.



COMPARING SORTING ALGORITHMS

 In-place algorithm implementation

 sorts the data within the original structure

 uses only a small constant amount of extra storage 

space

 eg swapping elements within an array

 moving pointers within a linked list

 All sorting algorithms CAN be implemented in-place, but some 

algorithms are naturally in-place and others are not



SORTING

 Three simple sorting algorithms:

 Bubble sort

 Bubble sort with Early Exit

 Selection sort

 Insertion sort 

 One more complex sorting algorithm:

 Shell sort



BUBBLESORT

 `Bubbles‘  rise to the top until they hit a bigger bubble, 
which then starts to rise 
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BUBBLE SORT

void bubbleSort(int items[], int n) { 

int i, j; 

for (i = n - 1; i > 0 ; i--){

for (j = 1; j <= i; j++) {

//comparison 

if (items[j - 1] > items[j]){

swap(j, j - 1,items); 

} 

} 

} 

}



BUBBLE SORT DETAILED ANALYSIS

 Outer Loop (C0):  for (i = n - 1; i > 0 ; i--)

 N

 Inner Loop (C1):    for (j = 1; j <= i; j++) 

 N+ (N-1) + (N-2) +  … + 2 = (N2+N)/2 - 1

 Comparisons (C2): 

 (N-1) + (N-2)  + …+ 0 = (N2-N)/2 

 Swaps(C3): assuming worst case where we ALWAYS 

have to swap:       
 (N-1) + (N-2) +  … + 0 = (N2-N)/2 

 T(n) = C0 * N + C1*((N2+N)/2-1) + C2*((N2-N)/2) + C3 * ((N2-N)/2)

 O(N2)



BUBBLE SORT: WORK COMPLEXITY

 How many steps does it take to sort a collection of N
elements?

 each traversal has up to N comparisons

 N traversals necessary

 Overall:

 T(N)= N + N-1 + …. + 1 = N(N-1)/2

 Bubble sort is in O(N2),

 Stable, in-place, non-adaptive



IMPROVING BUBBLE SORT

 Can improve on bubble sort by stopping when the 

elements are sorted
 If we complete a whole pass with any swaps, we know it must 

be in order

 Called bubble sort with early exit

 Will not help cases that are in reverse order



BUBBLE SORT WITH EARLY EXIT

void bubbleSortEE(int items[], int n) { 

int i, j; 

int done = 0;

for (i = n - 1; i > 0 && !done; i--){

done = 1; // Assume sorted 

for (j = 1; j <= i; j++) { 

if (items[j - 1] > items[j]){

swap(j, j - 1,items); 

done = 0; 

} 

} 

} 

}



BUBBLE SORT WITH EARLY EXIT: WORK

COMPLEXITY

 How many steps does it take to sort a collection of N elements?

 each traversal has N comparisons

 Best case: collection already sorted we exit after one iteration

 Worst case: collection in reverse order, we do not exit early so N
traversals still necessary

 Overall:

 TWorst(N) = N-1 + N-2 ....... 1 = N2 in the worst case (sequence in 
reverse order)

 TBest(N) = N in the best case (sequence ordered)

 Bubble sort with early exit  is still O(N2),

 Is adaptive as is linear for a sequence that’s already sorted

 Is stable, in-place



SELECTION SORT

(1) Select the smallest element and insert it into first position of result

(2) Select the next smallest element, and insert it into second position 
of result

(3) Continue, until all elements are in the right position

4 1 7 3 8 6 5 2

1 2 3 4 5 6 7 8



SELECTION SORT ON AN ARRAY

//Does not use a second array. Sorts within the original array

void selectionSort(int items[], int n) {

int i, j, min;

for (i = 0; i < n - 1; i++) {

min = i; // current minimum is first unsorted element

// find index of minimum element

for (j = i + 1; j < n; j++) {

if (items[j] < items[min]) {

min = j; 

}

}

// swap minimum element into place

swap(i, min, items[i], items[min]);

}

}



SELECTION SORT WORK COMPLEXITY

 How many steps does it take to sort a collection of N
elements?

 picking the minimum in a sequence of N elements: N steps

 inserting at the right place: 1

 Overall:

 T (N) = N + (N-1) + (N-2) + .... + 1 = (N+1)*N/2

 Selection sort is in O(N2),

 This implementation is not stable

 This implementation is in-place, 

 Not adaptive



INSERTION SORT

(1) Take first element and insert it into first position (trivially 

sorted, because it has only one element)

(2) Take next element, and insert it such that order is 

preserved 

(3) Continue, until all elements are in the correct positions



SIMPLE INSERTION SORT

void insertionSort(int items[], int n) { 

int i, j, key; 

for (i = 1; i < n; i++) { 

key = items[i]; 

for (j = i; j >= 1 && key < items[j-1]; j--){

items[j] = items[j - 1];

}

items[j] = key; 

} 

}



SIMPLE INSERTION SORT WITH SHIFT: WORK

COMPLEXITY

 How many steps does it take to sort a collection of N elements?

 For every element (N elements)

 1 step to pick an element

 Inserting into a sequence of N elements can take up to N steps

 Overall:

 TWorst(N) = 1 + 2 + .... + N = (N+1) * N/2 in the worst case

 TBest(N) = 1 + 1 +      + 1  = N in the best case

 Insertion sort is in O(N2), 

 Is adaptive as it is linear for a sequence that’s already sorted

 Is stable, in-place



SHELL SORT

 Short comings of insertion sort/bubble sort 

 Exchanges only involve adjacent elements

 Long distance exchanges can be more efficient

 Shell sort basic idea:

 Sequence is h-sorted

 taking every h-th element gives a sorted sequence

 h-sort the sequence with smaller values of h until h=1

 What sequence of h values should we use?

 Knuth proposed 1 4 13 40 121 364...

 It is easy to compute and results in an efficient sort

 What is the best sequence ? No-one knows



EXAMPLE H-SORTED ARRAYS



SHELL SORT (WITH H-VALUES 1,4,13,40…)

void shellSort(int items[], int n) {

int i, j, h; 

//the starting size of h is found.

for (h = 1; h <= (n - 1)/9; h = (3 * h) + 1);

for (; h > 0; h /= 3) {

//when h = 1 this is insertion sort 

for (i = h; i < n; i++) { 

int key = items[i]; 

for(j=i; j>=h && key<items[j - h]; j -=h){ 

items[j] = items[j - h]; 

}

items[j] = key; 

} 

} 

}



SHELL SORT: WORK COMPLEXITY

 Exact time complexity properties depend on the h-

sequence

 So far no-one has been able to analyse it precisely

 For the h-values we have used Knuth suggests around 

O(n3/2)

 It is adaptive as it does less work when items are in 

order – based on insertion sort.

 It is not stable, 

 In-place



LINKED LIST IMPLEMENTATIONS

 Bubble Sort :

• Traverse list: if current element bigger than next, swap 
places, repeat. 

 Selection Sort:

 Straight forward: delete selected element from list and 
insert as first element into the sorted list, easy to make 
stable

 Insertion Sort:

 Delete first element from list and insert it into new list. 
Make sure that insertion preserves the order of the new 
list

 Shell Sort:

• Can be done …but better suited to arrays


