
Divide and Conquer Sorting Algorithms and Non-

comparison-based Sorting Algorithms

COMP1927 16x1

Sedgewick Chapters 7 and 8

Sedgewick Chapter 6.10, Chapter 10



DIVIDE AND CONQUER SORTING ALGORITHMS

• Step 1

‣ If a collection has less than two elements, it’s already 

sorted

‣ Otherwise, split it into two parts

• Step 2

‣ Sort both parts separately

• Step 3

‣ Combine the sorted collections to return the final result



MERGE SORT

 Basic idea: Divide and Conquer

 split the array into two equal-sized partitions

 (recursively) sort each of the partitions

 merge the two sorted partitions together

 Merging: Basic idea

 copy elements from the inputs one at a time

 give preference to the smaller of the two

 when one exhausted, copy the rest of the other



DIVIDE AND CONQUER SORTING: 

MERGESORT

 Split the sequence in halves

 Sort both halves independently

 What is the best way to combine them?

 look at the first element in each sequence, pick the smallest of both, 
insert in sorted collection, continue until all elements are used up

5 6 1 7 3 2 8 4

5 6 1 7 3 2 8 4

(1) split

1 5 6 7 2 3 4 8

(2)call sort rec.

1 2 3 4 5 6 7 8
(3)merge



MERGE SORT: ARRAY IMPLEMENTATION

 assuming we have merge implemented, mergesort can be 

defined as:

void merge (int a[], int l, int m, int r);

void mergesort (Item a[], int l, int r){   

int m = (l+r)/2;  

if  (r <= l) {    

return;  

}  

mergesort (a, l, m);   

mergesort (a, m+1, r);

merge (a, l, m, r);

}



MERGE ARRAY IMPLEMENTATION

void merge(int a[], int l, int mid, int r) {

int i, j, k, nitems = r-l+1; 

int *tmp = malloc(nitems*sizeof(int)); 

i = l; j = mid+1; k = 0; 

while (i <= mid && j <= r) { 

if ( a[i] < a[j] ) {

tmp[k++] = a[i++]; 

}else{ 

tmp[k++] = a[j++]; 

}

}

while (i <= mid) tmp[k++] = a[i++]; 

while (j <= r) tmp[k++] = a[j++]; 

//copy back 

for (i = l, k = 0; i <= r; i++, k++) 

a[i] = tmp[k]; 

free(tmp); 

}  



MERGESORT: WORK COMPLEXITY

 How many steps?

 Constant time (on arrays, for example) to split array into two halves

 N steps to combine (merge)

 T(N) =  N + 2* T(N/2) 

 Substitute N = 2N

 T(2N) = 2N + 2T(2N/2) 

 = 2N + 2T(2N-1)

 T(2N)/2N = 1 + T(2N-1)/(2N-1)

 = 1 + (1 + T(2N-2)/(2N-2)) = 1 + 1 + (1+ T(2N-3)/2N-3) etc = N

 T(2N)  = 2NN

 T(N) = Nlog2N              



MERGE SORT WORK COMPLEXITY

 How many steps does it take to sort a collection of 

N elements?

 split array into equal-sized partitions 

 same happens at every recursive level 

 each "level" requires ≤ N comparisons 

 In worst case exactly interleaved and is N

 halving at each level ⇒ log2N levels

 Overall:

 Merge sort is in O(nlogn),

 Stable – as long as merge implemented to be stable

 Not in-place: Uses O(n) memory for merge and O(logn) 

stack space

 Non-adaptive : still nlogn for ordered data



BOTTOM UP MERGE SORT

 Basic Idea: Non-recursive

 On each pass, array contains sorted sections of length m

 At start treat as n sorted sections of length 1

 1st pass merges adjacent elements into sections of length 2

 2nd pass merges adjacent elements into sections of length 4

 continue until a single sorted section of length n

 This approach is used for sorting diskfiles



BOTTOM-UP MERGE SORT ARRAY

IMPLEMENTATION

#define min(A,B) (A<B ? A : B)

int merge (int a[], int l, int m, int r);

void mergesortBU (int a[], int l, int r){   

int i, m, end;

for (m = 1; m <= r-l; m = 2*m) {

for (i = l; i <= r-m; i += 2*m) {

end = min(i + 2*m – 1, r));

merge (a, i, i+m-1, end);

}

}

}



MERGE SORT: IMPLEMENTATION

 Straight forward to implement on lists 

 Traverses its input in sequential order

 Do not need extra space for merging lists

 Works for top-down and bottom up versions



DIVIDE AND CONQUER SORTING: QUICKSORT

 Mergesort uses a trivial split operation and puts all the work in 
combining the result

 Can we split the collection in a more intelligent way, such that 
combining the results is trivial?

 make sure all elements in one part are less than all the elements in 
the second part

5 6 1 7 3 2 8 4

1 3 2 4 6 7 8

(1) split

1 2 3 4 6 7 8

(2) call sort rec.

1 2 3 4 5 6 7 8
(3)combine



MORE ON QUICK SORT: IMPLEMENTATION

On arrays, we need in-place partitioning: 

 we need to swap elements in the array, such that for some 
pivot we choose, and some index i, all

 j<i, a[j] ≤ a[i], and

k>i, a[k] ≥ a[i]

l ri

≤ a[i] ≥ a[i]



QUICK SORT

 Given such a partition function, the implementation of quick 
sort on arrays is easy:

 However, it’s surprisingly tricky to get partition right for all 
cases

int partition(int a[], int l, int r);

void quicksort (int a[], int l, int r){         

int i;  

if  (r <= l) {

return;

} 

i = partition (a, l, r);  

quicksort (a, l, i-1);  

quicksort (a, i+1, r);

}



QUICK SORT: PARTITIONING
int partition (int a[], int l, int r) {   

int i = l-1;

int j = r;   

int pivot = a[r]; //rightmost is pivot  

for (;;) {   

while ( a[++i] < pivot) ;    

while ( pivot <  a[--j] && j != l);

if (i >= j) { 

break;

}    

swap(i,j,a);  

}

//put pivot into place  

swap(i,r a);  

return i; //Index of the pivot

}



QUICKSORT: WORK COMPLEXITY

 How many steps?

 N steps to split array in two

 Combing the sorted sub-results in constant time 

 Best case (both parts have the same size):

 T(N) = N + 2* T(N/2) 

 Worst case (one part contains all elements):

 T(N) = N + T(N-1)  

 = N + N-1 + T(N-2)

 = N + N-1 + N-2 + ... + 1 = N(N+1)/2

 = O(N2) 

O(N * log N)



QUICK-SORT PROPERTIES

 It is not adaptive: existing order in the sequence 

only makes it worse

 It is not stable in our implementation. Can be made 

stable.

 In-place: Partitioning done in place

 Recursive calls use stack space of 

O(N) in worst case

O(log N) on average



QUICK SORT - PERFORMANCE PROBLEMS

 Taking the first or last element as pivot is often a 

bad choice

 sequence might be partially sorted already

 Already ordered data is a worst case scenario

 Reverse ordered data is a worst case scenario

 split into parts of size N-1 and 0

 Ideally our pivot would be

The median value

 In the worst case our pivot  is

 the largest or smallest value



QUICK SORT CHOOSING BETTER A PIVOT

 We can  reduce the probability of picking a bad 

pivot

 picking a random element as the pivot

 picking the best out of three (or more)

Median of Three partitioning

Compare left-most, middle and right-most 

element

Pick the median of these 3 values to be the pivot

Does not eliminate the worst case but makes it 

less likely

Ordered data no longer a worst case scenario



QUICK SORT MEDIAN OF THREE

PARTITIONING- CHOOSING A BETTER PIVOT

(1) pick a[l],a[r], a[(r+l)/2]

(2) swap a[r-1] and a[(r+l)/2]

(3) sort a[l], a[r-1],a[r] such that a[l]<=a[r-1] <= a[r]

(4) call partition on a[l+1] to a[r-1]

l r(l+r)/2 r-1



QUICK SORT: PERFORMANCE AND

OPTIMISATION

 Optimised versions of quick sort are frequently used 

 For small sequences, quick sort is relatively 

expensive because of the recursive calls

 Quick sort with subfile cutoff

 Handle small partitions less than a certain 

threshold length differently

Switch to insertion sort for the small partitions

Don’t sort. Leave and do insertion sort at the 

end

 Handling duplicates more efficiently by using three 

way partitioning.



QUICKSORT ON LINKED LISTS

 Straight forward to do if we just use first or last 

element as the pivot

 Picking the pivot via randomisation or median of 3 is 

now O(n) instead of O(1).



QUICK SORT VS MERGE SORT

 On typical modern architectures, efficient quicksort

implementations generally outperform mergesort for 

sorting RAM-based arrays.

 Quick Sort is also a cache friendly sorting algorithm as 

it has good locality of reference when used for arrays.

 On the other hand, merge sort is a stable sort, 

parallelizes better, and is more efficient at handling 

slow-to-access sequential media. Merge sort is 

often the best choice for sorting a linked list and the 

merging can be done without using extra space that 

is used during merge for arrays.

http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Locality_of_reference
http://en.wikipedia.org/wiki/Linked_list


HOW FAST CAN A SORT BECOME?

 All the sorts we have seen so far have been 
comparison based sorts

 find order by comparing elements in the sequence

 can sort any type of data as long as there is a way to 
compare 2 items

 Theoretical lower bound on worst case running time of 
comparison based sorts

 O(nlog(n)). 

 Algorithms such as quicksort and mergesort are really 
about as fast as we can go for unknown types of data.



SORTING HAS A THEORETICAL NLOGN LOWER

BOUND

 If there is 3 items, then 3! = 6 possible permutations 

or 6 possible different inputs

 If there are n items, then n! possible permutations or 

inputs 

 If we do 1 comparison we can divide into 2 different 

categories 

 If we do k comparisons we can divide into 2k different 

categories 

 We need to do enough comparisons so

 n! <= 2K

 log n! <= log 2k 

 log n! <= k

 n log n <= k    (using stirling’s approximation) 



NON-COMPARISON BASED SORTING

 Non-comparison based sorting

 We may not actually have to compare pairs of elements to 
sort the data.  

 Specialised sorts can be implemented if additional 
information about the data to be sorted is known.

 Take advantage of special properties of keys

 We can do some kinds of sorts in linear time!



KEY INDEXED COUNTING SORT

 Basic Idea:

 Using an array, count up number of times each key 

appears

 Use this information as an index of where the item belongs 

in the final sorted array

 Place items in the final sorted array based on their index

 For example: Sorting numbers from 0..10

 If I knew there were three 0’s and two 1’s

 If I had a 2, it would go at index 5

 If I got another 2, it would go at index 6. 



KEY INDEXED COUNTING SORT

 May work in O(n) time. How?

 Because it uses no comparisons! 

 But we have to make assumptions about the size and 

nature of the data

 Assumptions

 Sequence of size N

 Each key is in the range of 0 - M-1

 Time Complexity
 Efficient if M is not too large compared to N

 O(n + M) - Not good in cases like : 1,2,999999

 In-place? No. Uses temporary arrays of O(n+M)

 Is stable



RADIX SORTING

 Comparison based sorting:

 Sorting based on comparing two whole keys

 Radix sorting:

 Processing keys one piece at a time

 Keys are treated as numbers represented in base-R 

(radix) number system

 Binary numbers R is 2

 Decimal numbers R is 10

 Ascii strings R is 128 or 256

 Unicode strings R is 65,536

 Sorting is done individually on each digit in the key 

on at a time – digit by digit or character by character



RADIX SORT LSD (LEAST SIGNIFICANT DIGIT

FIRST)

 Consider characters or digits or bits from Right to 

Left (ie from least significant)

 Stably sort using dth digit as the key 

 Can use Key Indexed Counting sort. 

 For example: sorting 1019, 2301, 3129, 2122

1019, 2301, 3129, 2122 -> 2301, 2122, 1019, 3129

2301, 2122, 1019, 3129 -> 2301, 1019, 2122, 3129 

2301, 1019, 2122, 3129 -> 1019, 2122, 3129, 2301 

1019, 2122, 3129, 2301 -> 1019, 2122, 2301,3129



RADIX SORT LSD PROPERTIES 

 O(w(n+R)) 

 w is the width of the data ie 987 is 3 digits wide, “aaa” is 

3 characters, integers (binary rep) could have w as 32 

and R of 2 

 The algorithm makes w passes over all n keys. 

 Not in place: extra space: O(n + R) 

 Stable 

 Can modify to use for variable length data 

 Imagine sorting strings like 

 “zaaaaaaa” and “aaaaaaaa” 

 Can spend lots of work comparing insignificant 

details 



RADIX SORT MSD (MOST SIGNIFICANT DIGIT

FIRST)

 Partition file into R pieces according to first 

character 

 Can use key-indexed counting 

 Recursively sort all strings that start with each 

character 

 key-indexed counts delineate files to sort 

 O(w(n+R)) – in worst case 

 Extra space N + DR (D is depth of recursion) 

 Don't have to go through all of the digits to get a 

sorted array. This can make MSD radix sort 

considerably faster 

 Can use insertion sort for small subfiles


