
Graphs
Computing 2 COMP1927 16x1

Sedgewick Part 5: Chapter 17

WHAT ARE GRAPHS

 Many applications require a collection of items (i.e.

a set)

 relationships/connections between items

 Examples: maps: items are cities, connections are

roads

 web: items are pages, connections are hyperlinks

 Collection types we've seen so far

 Lists…linear sequence of items

 trees ... branched hierarchy of items

 These are both special cases of graphs.

 Graphs are more general ... allow arbitrary

connections.

DEFINITION OF A GRAPH

 A graph G = (V,E)

 V is a set of vertices

 E is a set of edges (subset of V×V)

 Example:

OTHER GRAPH APPLICATION EXAMPLES

Graph Vertices Edges

Communication Telephones,

Computers

cables

Games Board positions Legal moves

Social networks People Friendships

Scheduling Tasks Precedence

Constraints

Circuits Gates,Registers,

Processors

Wires

Transport Intersections/

airports

Roads,flights

A REAL EXAMPLE:

AUSTRALIAN ROAD DISTANCES

Dist Adel Bris Can Dar Melb Perth Syd

Adel - 2055 1390 3051 732 2716 1605

Bris 2055 - 1291 3429 1671 4771 982

Can 1390 1291 - 4441 658 4106 309

Dar 3051 3429 4441 - 3783 4049 4411

Melb 732 1671 658 3783 - 3448 873

Perth 2716 4771 4106 4049 3448 - 3972

Syd 1605 982 309 4411 873 3972 -

A REAL GRAPH EXAMPLE

 Alternative representation of Australian roads:

GRAPHS

 Questions we might ask about a graph

 is there a way to get from item A to item B?

 what’s the best way?

 which items are connected?

 Graph algorithms are in general significantly more

difficult than list or tree processing

 no implicit order of the items

 graphs can contain cycles

 concrete representation is less obvious

 complexity of algorithms depend connection complexity

SIMPLE GRAPHS

At this point, we will only consider simple graphs which

are characterised by:

 a set of vertices, and

 a set of undirected edges that connect pairs of vertices

 no self loops

 no parallel edges

Depending on the application, graphs can have different properties:

undirected directed multigraph weighted

SIMPLE GRAPH: VERTICES AND EDGES

 In our example graph:

 V (number of vertices): 7

 From 0 to 6

 A 7-vertex graph

 E (number of edges): 11

 How many edges can a 7-vertex

simple graph have?

 7*(7-1)/2 = 21

0 1

2 3

5

4

6

SIMPLE GRAPH: VERTICES AND EDGES

 E <= V*(V-1)/2

 If E is closer to V2 the graph is dense

 If E is closer to V the graph is sparse

 If E is 0 we have a set

 These properties may affect

 choice of data structures to represent

the graph and

 the algorithms used

0 1

2 3

5

4

6

GRAPHS: TERMINOLOGY

 The degree of a vertex is the number of edges from

the vertex

 A complete graph is a graph where every vertex is

connected to all the other vertices

 E = V(V-1)/2

 The degree of every vertex is

 V-1

GRAPH TERMINOLOGY

 adjacent: two vertices, v and w are adjacent if there is

an edge, e, between them

 e is incident on both v and w
0 1

2 3

56

GRAPH TERMINOLOGY

0 1

2 3

5

4

6

subgraph: a subset of vertices

with their associated edges

GRAPH TERMINOLOGY: PATHS

a path: a sequence of vertices where

each one is connected to its predecessor

1,0,6,5

a graph is a tree if there is exactly one

path between each pair of vertices

a path is simple if it doesn’t have any

repeating vertices

a path is a cycle if it is simple apart from

its first and last vertex

0 1

2 3

5

4

6

GRAPH TERMINOLOGY

 A graph is a connected graph, if there is a path from

every vertex to every other vertex in the graph

GRAPH TERMINOLOGY

 A graph that is not connected consists of a set of

connected components, which are maximally

connected subgraphs

GRAPH TERMINOLOGY

 A spanning tree of a graph is a subgraph that

contains all the vertices and is a single tree

GRAPH TERMINOLOGY

 A spanning forest of a graph is a subgraph that

contains all its vertices and is a set of trees

CLIQUES

 Clique: complete subgraph

 Clique containing vertices{A, G, H, J, K, M}

 Another clique containing vertics {D,E,F,L}

2
0

…GRAPH TERMINOLOGY

 Hamilton path

 A simple path that

connects two vertices

that visits every

vertex in the graph

exactly once

 If the path is from a

vertex back to itself it

is called a hamilton

tour

EXERCISE:

DOES THIS HAVE A HAMILTON PATH?

2
2

…GRAPH TERMINOLOGY

 Euler path

 A path the connects

two given vertices

using each edge in

the path exactly once.

 If the path is from a

vertex back to itself it

is an euler tour

B

A C

E D

2
3

EXERCISE:

DOES THIS HAVE AN EULER PATH?

 A graph has an Euler

tour if and only if it is

connected and all

vertices are of even

degree

 A graph has an Euler

path if and only if it is

connected and exactly 2

vertices are of odd

degree

A B

D C

DIRECTED GRAPHS

 If the edges in a graph are directed, the graph is

called a directed graph or digraph

 a digraph with V vertices can have at most V2 edges

 Can have self loops

 edge(u,v) != edge(v,u)

 a digraph is a tree if there is one vertex which is

connected to all other vertices, and there is at most one

path between any two vertices

 Unless specified, we assume graphs are

undirected in this course.

UNDIRECTED VS DIRECTED GRAPHS

OTHER TYPES OF GRAPHS

 Weighted graph

 each edge has an associated value (weight)

 e.g. road map (weights on edges are distances
between cities)

 Multi-graph

 allow multiple edges between two vertices

 e.g. function call graph (f() calls g() in several
places)

 eg. Transport – may be able to get to new location
by bus or train or ferry etc…

DEFINING GRAPHS

 need some way of identifying vertices and their

connections

 Below are 4 representations of the same graph

GRAPH ADT

 Data:

 set of edges,

 set of vertices

 Operations:

 building: create graph, create edge, add edge

 deleting: remove edge, drop whole graph

 scanning: get edges, copy, show

 Notes: In our graphs

 set of vertices is fixed when graph initialised

 we treat vertices as ints, but could be Items

ADT INTERFACE FOR GRAPHS

 Vertices and Edges

typedef int Vertex;

// edge representation

typedef struct edge {

Vertex v;

Vertex w;

} Edge;

// edge construction

Edge mkEdge (Vertex v, Vertex w);

ADT INTERFACE OR GRAPHS

 Graph basics:

// graph handle

typedef struct GraphRep *Graph;

// create a new graph

Graph graphInit (int noOfVertices);

int validV(Graph g,Vertex v); //validity check

• Graph inspection and manipulation:

void insertEdge (Graph g, Edge e);

void removeEdge(Graph g, Edge e);

Edge * edges (Graph g, int * nE);

int isAdjacent(Graph g, Vertex v, Vertex w);

int numV(Graph g);

int numE(Graph g);

• Whole graph operations:

Graph GRAPHcopy (Graph g);

void GRAPHdestroy (Graph g);

ADJACENCY MATRIX REPRESENTATION

 Edges represented by a VxV matrix

ADJACENCY MATRIX REPRESENTATION

 Advantages

 easily implemented in C as 2-dimensional array

 can represent graphs, digraphs and weighted graphs

graphs: symmetric boolean matrix

digraphs: non-symmetric boolean matrix

weighted: non-symmetric matrix of weight values

 Disadvantages:

 if few edges ⇒ sparse, memory-inefficient

ADJACENCY MATRIX IMPLEMENTATION

typedef struct GraphRep {

int nV; // #vertices

int nE; // #edges

int **edges; // matrix of booleans

} GraphRep;

ADJACENCY MATRIX STORAGE OPTIMISATION

 Storage cost:

 V int ptrs + V2 ints If the graph is sparse, most storage

is wasted.

 A storage optimisation:

 If undirected, store only top-right part of matrix.

 New storage cost: V-1 int ptrs + V(V+1)/2 ints (but still

O(V2))

 Requires us to always use edges (v,w) such that v < w.

COST OF OPERATIONS ON ADJACENCY MATRIX

 Cost of operations:

 initialisation: O(V2) (initialise V×V matrix)

 insert edge: O(1) (set two cells in matrix)

 delete edge: O(1) (unset two cells in matrix)

 See code for the implementation of these functions

and their cost

 int isAdjacent(Graph g, Vertex v, Vertex w);

 Vertex * adjacentVertices(Graph g, Vertex v, int * nV);

 Exercise : write the functions and find the cost for

 Edge * edges (Graph g, int * nE);

ADJACENCY LIST REPRESENTATION

 For each vertex, store linked list of adjacent

vertices:

ADJACENCY LIST REPRESENTATION

 Advantages

 relatively easy to implement in C

 can represent graphs and digraphs

 memory efficient if E/V relatively small

 Disavantages:

 one graph has many possible representations

(unless lists are ordered by same criterion e.g.

ascending)

ADJACENCY MATRIX IMPLEMENTATION

typedef struct vNode *VList;

struct vNode { Vertex v; VList next; };

typedef struct GraphRep {

int nV; // #vertices

int nE; // #edges

VList *edges; // array of lists

} GraphRep;

COSTS OF OPERATIONS ON ADJACENCY LISTS

 Cost of operations:

 initialisation: O(V) (initialise V lists)

 insert edge: O(1) (insert one vertex into list)

 delete edge: O(V) (need to find vertex in list)

 If vertex lists are sorted insert requires search of list

⇒ O(V)

 If we do not want to allow parallel edges it is O(V)

 delete always requires a search, regardless of list

order

COSTS OF OPERATIONS ON ADJACENCY

LISTS

 See code for the implementation of these functions

and their cost

 int isAdjacent(Graph g, Vertex v, Vertex w);

 Vertex * adjacentVertices(Graph g, Vertex v, int * nV);

 Exercise : write the functions and find the cost for

 Edge * edges (Graph g, int * nE);

COMPARISON OF DIFFERENT GRAPH

REPRESENTATIONS

adjacency matrix adjacency list

space V2 V + E

initialise empty V2 V

copy V2 E

destroy V E

insert edge 1 V

find/remove edge 1 V

is v isolated? V 1

isAdjacent 1 V

