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WHAT ARE GRAPHS

 Many applications require a collection of items (i.e. 

a set) 

 relationships/connections between items 

 Examples: maps: items are cities, connections are 

roads 

 web: items are pages, connections are hyperlinks

 Collection types we've seen so far

 Lists…linear sequence of items 

 trees ... branched hierarchy of items

 These are both special cases of graphs.

 Graphs are more general ... allow arbitrary 

connections. 



DEFINITION OF A GRAPH

 A graph G = (V,E)

 V is a set of vertices 

 E is a set of edges (subset of V×V) 

 Example: 



OTHER GRAPH APPLICATION EXAMPLES

Graph Vertices Edges

Communication Telephones, 

Computers

cables

Games Board positions Legal moves

Social networks People Friendships

Scheduling Tasks Precedence

Constraints

Circuits Gates,Registers,

Processors

Wires

Transport Intersections/

airports

Roads,flights



A REAL EXAMPLE: 

AUSTRALIAN ROAD DISTANCES

Dist Adel Bris Can Dar Melb Perth Syd

Adel - 2055 1390 3051 732 2716 1605

Bris 2055 - 1291 3429 1671 4771 982

Can 1390 1291 - 4441 658 4106 309

Dar 3051 3429 4441 - 3783 4049 4411

Melb 732 1671 658 3783 - 3448 873

Perth 2716 4771 4106 4049 3448 - 3972

Syd 1605 982 309 4411 873 3972 -



A REAL GRAPH EXAMPLE

 Alternative representation of Australian roads:



GRAPHS

 Questions we might ask about a graph

 is there a way to get from item A to item B?

 what’s the best way?

 which items are connected?

 Graph algorithms are in general significantly more 

difficult than list or tree processing

 no implicit order of the items 

 graphs can contain cycles

 concrete representation is less obvious

 complexity of algorithms depend connection complexity



SIMPLE GRAPHS

At this point, we will only consider simple graphs which 

are characterised  by:

 a set of vertices, and

 a set of undirected edges that connect pairs of vertices

 no self loops

 no parallel edges

Depending on the application, graphs can have different properties:

undirected directed multigraph weighted



SIMPLE GRAPH: VERTICES AND EDGES

 In our example graph:

 V (number of vertices): 7

 From  0 to 6

 A 7-vertex graph

 E (number of edges): 11

 How many edges can a 7-vertex 

simple graph have?

 7*(7-1)/2 = 21
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SIMPLE GRAPH: VERTICES AND EDGES

 E <= V*(V-1)/2

 If E is closer to V2 the graph is dense

 If E is closer to V the graph is sparse

 If E is 0 we have a set

 These properties may affect

 choice of data structures to represent 

the graph and 

 the algorithms used
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GRAPHS: TERMINOLOGY

 The degree of a vertex is the number of edges from 

the vertex

 A complete graph is a graph where every vertex is 

connected to all the other vertices 

 E = V(V-1)/2

 The degree of every vertex is

 V-1



GRAPH TERMINOLOGY

 adjacent: two vertices, v and w are adjacent if there is 

an edge, e, between them

 e is incident on  both v and w
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GRAPH TERMINOLOGY
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subgraph: a subset of vertices

with their associated edges



GRAPH TERMINOLOGY: PATHS

a path: a sequence of vertices where 

each one is connected to its predecessor

1,0,6,5

a graph is a tree if there is exactly one 

path between each pair of vertices

a path is simple if it doesn’t have any 

repeating vertices

a path is a cycle if it is simple apart from 

its first and last vertex
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GRAPH TERMINOLOGY

 A graph is a connected graph, if there is a path from 

every vertex to every other vertex in the graph



GRAPH TERMINOLOGY

 A graph that is not connected consists of a set of 

connected components, which are maximally 

connected subgraphs



GRAPH TERMINOLOGY

 A spanning tree of a graph is a subgraph that 

contains all the vertices and is a single tree



GRAPH TERMINOLOGY

 A spanning forest of a graph is a subgraph that 

contains all its vertices and is a set of trees



CLIQUES

 Clique: complete subgraph

 Clique containing  vertices{A, G, H, J, K, M}

 Another clique containing vertics {D,E,F,L}
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…GRAPH TERMINOLOGY

 Hamilton path

 A simple path that 

connects two vertices 

that visits every 

vertex in the graph 

exactly once

 If the path is from a 

vertex back to itself it 

is called a hamilton 

tour



EXERCISE: 

DOES THIS HAVE A HAMILTON PATH?
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…GRAPH TERMINOLOGY

 Euler path

 A path the connects 

two given vertices 

using each edge in 

the path exactly once.

 If the path is from a 

vertex back to itself it 

is an euler tour
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EXERCISE: 

DOES THIS HAVE AN EULER PATH?

 A graph has an Euler 

tour if and only if it is 

connected and all 

vertices are of even 

degree

 A graph has an Euler 

path if and only if it is 

connected and exactly 2 

vertices are of odd 

degree
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DIRECTED GRAPHS

 If the edges in a graph are directed, the graph is 

called a directed graph or digraph

 a digraph with V vertices can have at most V2 edges

 Can have self loops

 edge(u,v) != edge(v,u)

 a digraph is a tree if there is one vertex which is 

connected to all other vertices, and there is at most one 

path  between any two vertices

 Unless specified, we assume graphs are 

undirected in this course.



UNDIRECTED VS DIRECTED GRAPHS



OTHER TYPES OF GRAPHS

 Weighted graph 

 each edge has an associated value (weight) 

 e.g. road map (weights on edges are distances 
between cities) 

 Multi-graph 

 allow multiple edges between two vertices 

 e.g. function call graph (f() calls g() in several 
places) 

 eg. Transport – may be able to get to new location 
by bus or train or ferry etc…



DEFINING GRAPHS

 need some way of identifying vertices and their 

connections

 Below are 4 representations of the same graph



GRAPH ADT

 Data: 

 set of edges, 

 set of vertices 

 Operations: 

 building: create graph, create edge, add edge 

 deleting: remove edge, drop whole graph 

 scanning: get edges, copy, show 

 Notes: In our graphs 

 set of vertices is fixed when graph initialised 

 we treat vertices as ints, but could be Items 



ADT INTERFACE FOR GRAPHS

 Vertices and Edges

typedef int Vertex;

// edge representation

typedef struct edge {

Vertex v;

Vertex w;

} Edge;  

// edge construction

Edge mkEdge (Vertex v, Vertex w); 



ADT INTERFACE OR GRAPHS

 Graph basics:

// graph handle

typedef struct GraphRep *Graph;

// create a new graph

Graph  graphInit (int noOfVertices);

int validV(Graph g,Vertex v); //validity check

• Graph inspection and manipulation:

void  insertEdge (Graph g, Edge e);

void  removeEdge(Graph g, Edge e);

Edge *  edges (Graph g, int * nE);

int isAdjacent(Graph g, Vertex v, Vertex w);

int numV(Graph g);

int numE(Graph g);

• Whole graph operations:

Graph GRAPHcopy (Graph g);

void  GRAPHdestroy (Graph g);



ADJACENCY MATRIX REPRESENTATION

 Edges represented by a VxV matrix



ADJACENCY MATRIX REPRESENTATION

 Advantages 

 easily implemented in C as 2-dimensional array 

 can represent graphs, digraphs and weighted graphs 

graphs: symmetric boolean matrix 

digraphs: non-symmetric boolean matrix 

weighted: non-symmetric matrix of weight values 

 Disadvantages: 

 if few edges ⇒ sparse, memory-inefficient 



ADJACENCY MATRIX IMPLEMENTATION

typedef struct GraphRep { 

int nV;      // #vertices 

int nE;      // #edges 

int **edges; // matrix of booleans

} GraphRep;



ADJACENCY MATRIX STORAGE OPTIMISATION

 Storage cost: 

 V int ptrs + V2 ints If the graph is sparse, most storage 

is wasted. 

 A storage optimisation: 

 If undirected, store only top-right part of matrix.

 New storage cost: V-1 int ptrs + V(V+1)/2 ints (but still 

O(V2)) 

 Requires us to always use edges (v,w) such that v < w. 



COST OF OPERATIONS ON ADJACENCY MATRIX

 Cost of operations: 

 initialisation: O(V2) (initialise V×V matrix) 

 insert edge: O(1) (set two cells in matrix) 

 delete edge: O(1) (unset two cells in matrix) 

 See code for the implementation of these functions 

and their cost

 int isAdjacent(Graph g, Vertex v, Vertex w);

 Vertex * adjacentVertices(Graph g, Vertex v, int * nV);

 Exercise : write the functions and find the cost for

 Edge *  edges (Graph g, int * nE);



ADJACENCY LIST REPRESENTATION

 For each vertex, store linked list of adjacent 

vertices: 



ADJACENCY LIST REPRESENTATION

 Advantages 

 relatively easy to implement in C 

 can represent graphs and digraphs 

 memory efficient if E/V relatively small 

 Disavantages: 

 one graph has many possible representations 

(unless lists are ordered by same criterion e.g. 

ascending) 



ADJACENCY MATRIX IMPLEMENTATION

typedef struct vNode *VList; 

struct vNode { Vertex v; VList next; };

typedef struct GraphRep { 

int nV;       // #vertices 

int nE;       // #edges 

VList *edges; // array of lists

} GraphRep;



COSTS OF OPERATIONS ON ADJACENCY LISTS

 Cost of operations: 

 initialisation: O(V) (initialise V lists) 

 insert edge: O(1) (insert one vertex into list) 

 delete edge: O(V) (need to find vertex in list) 

 If vertex lists are sorted insert requires search of list 

⇒ O(V)

 If we do not want to allow parallel edges it is O(V)

 delete always requires a search, regardless of list 

order 



COSTS OF OPERATIONS ON ADJACENCY

LISTS

 See code for the implementation of these functions 

and their cost

 int isAdjacent(Graph g, Vertex v, Vertex w);

 Vertex * adjacentVertices(Graph g, Vertex v, int * nV);

 Exercise : write the functions and find the cost for

 Edge *  edges (Graph g, int * nE);



COMPARISON OF DIFFERENT GRAPH

REPRESENTATIONS

adjacency matrix adjacency list

space V2 V + E

initialise empty V2 V 

copy V2 E

destroy V E

insert edge 1 V

find/remove edge 1 V

is v isolated? V 1

isAdjacent 1 V


