Graph Search

Computing 2 COMP1927 16x1

PROBLEMS ON GRAPHS

What kinds of problems do we want to solve on/via
graphs?

Is there a simple path from Ato B

Is the graph fully-connected?

Can we remove an edge and keep it fully connected?

Which vertices are reachable from v? (transitive
closure)

What Is the cheapest cost path from v to w?

Is there a cycle that passes through all V? (tour)

Is there a tree that links all vertices (spanning tree)
What is the minimum spanning tree?

Can a graph be drawn in a place with no crossing
edges?

Are two graphs “equivalent™? (isomorphism)

GRAPH SEARCH

We learn about properties of a graph by
systematically examining each of its vertices and
edges, for example

to compute the degree of all vertices, we visit each
vertex and count it's edges

for path related properties, we have to move from vertex
to vertex, along the graphs edges

We implement a general graph search algorithms
we can use to solve a wide range of graph
problems

SIMPLE PATH SEARCH

Problem: is there a path from vertex v to vertex w ?

Approach to solving problem:

examine vertices adjacent to v
If any of them is w, then we are done

otherwise check if there is a path from any of the adjacent
vertices

repeat looking further and further from v

Two different approaches to order of searching:
breadth-first search (BFS), depth-first search (DFS)

BFS vsS DFS PATH FINDING

Is there a path from a to h?

Breadth-first Search Depth-first Search

DFS vs BFS APPROACHES

DFS and BFS are closely related.

Implementation differs only their use of a stack
or a queue

BFS implemented via a queue of to-be-visited vertices

DFS implemented via a stack of to-be-visited vertices
(or recursion)

Both approaches ignore some edges and avoid
cycles by remembering previously visited vertices.

EXERCISE: DFS AND BFS TRAVERSAL
Show the DFS order we visit to determine
IsPath(a,k)

Show the BFS order we visit to determine
IsPath(a,k)

Assume neighbours are chosen in alphabetical order

DEPTH FIRST SEARCH

Basic approach to depth-first search:
visit and mark current vertex
for each neighbour, traverse it recursively

Notes:

need a mechanism for "marking" vertices

In fact, we number them as we visit them

(so that we could later trace path through graph)
Make use of three global variables:

count ... counter to remember how many vertices
traversed so far

pre[] ... array saying order in which each vertex was
visited (pre stands for preorder)

st[] ... array storing the predecessor of each vertex (st
stands for spanning tree)

DEPTH FIRST SEARCH TREE

The edges traversed in a graph walk form a tree

It corresponds to the call tree of the recursive dfs
function

Represents the original graph minus any cycles
or alternate paths

We can use a tree to encode the whole search
Process

Each time we visit a vertex we record the
previous vertex we came from - if the graph is
connected this forms a spanning tree

We store this In the st array

DEPTH FIRST SEARCH (DFS)

//
//
//
//
//

OL—0

N 2

O—@6

O
4@/5 oL

Assume we start with dummy Edge {0,0}

assume we start with count = 0

prel[v] = -1 for all v

st[v] = -1 for all v (stores the predecessor)
assume adjacency matrix representation

vold dfsR (Graph g, Edge e) {

Vertex 1, w = e.w;
pre[w] = count++;
st[w] = e.v;

for (1=0; 1 < g->V; 1i++) {

1f ((g->edges[w][1] == 1) && (preli] =

dfsR (g, mkEdge(g,w,1i));
}

DEPTH FIRST SEARCH (DFS)

OL—C0d
s P
@/5@\

A

23

0

1

2

3

4

5

6

v

pre

0

v

1

4

3

5

2

6

st

0

v

0

4

6

3

2

4

ONO

06006

° the edges traversed in the graph walk form a tree @ @
* the tree corresponds to the call tree of the depth first search
°and to the contents of the st array - spanning tree

° pre contains the pre-ordering of the vertices

PROPERTIES OF DFS FORESTS

If a graph is not connected it will produce a spanning forest
If it is connected it will form a spanning tree

we call an edge connecting a vertex with an ancestor in the DFS tree
that is not its parent a back edge

@\@\@
%762/ C? back edge
N (o)

) : |

/@\

EXERCISE: DFS TRAVERSAL

Which vertices will be visited during dfs(g):

o‘:° oo e:’ -

How can we ensure that all vertices are visited?

GRAPH SEARCH FUNCTION

The graph may not be connected

We need to make sure that we visit every connected
component:

volid dfSearch (Graph g) {

int v;
count = 0;
pre = malloc (sizeof (int) * g->nV));
st = malloc(sizeof (int) * g->nV));
for (v = 0; v < g->nV; v++) {

prel[v] = -1;

stlv] = -1;
}
for (v = 0; v < g->V; v++) {

if (prel[v] == -1)

dfsR (g, mkEdge(g,v,vVv));

* The work complexity of the graph search algorithm is O(V?) for adjacency
matrix representation, and O(V+kE) for adjacency list representation

EXERCISE: DFS TRAVERSAL
Trace the execution of dfs(g,0) on:

What if we were using DFS to search for a path
from 0..5? We would get 0-1-2-3-4-5. If we want the

shortest (least edges/vertices) path we need to use
BFS instead. See later slides for this.

EXERCISE: DFS TRAVERSAL

Show the final state of the pre and st arrays
after dfs(g,0):

NON-RECURSIVE DEPTH FIRST SEARCH

We can use a stack instead of recursion:

volid dfs (Graph g, Edge e) {
int 1;
Stack s = newStack();
StackPush (s,e);

while (!StackIsEmpty(s)) {
e = StackPop(s) ;

1f (prele.w] == -1) {
prele.w] = count++;
stle.w] = e.v;
for (i = 0; 1 < g->nV; 1i++) {
if ((g->edges[e.w][1] == 1) &&
(pre[i] == -1)) {

StackPush (s,mkEdge(g,e.w,1));

DFS ALGORITHMS: CYCLE DETECTION

Cycle detection: does a given graph have any cycles?
If and only If the DFS graph has back edges, it contains cycles
we can easlily detect this in the DFS search:

O——o— 7
"

DFS ALGORITHMS: CYCLE DETECTION

We are only checking for the existence of cycle, we are
not returning It

//Return 1 if there is a cycle
int hasCycle (Graph g, Edge e) {

int 1, w = e.w;
prel[w] = count++;
stw] = e.v;
for (i=0; 1 < g->V; 1++) {
1f ((g->edges[w][1] == 1) && (prel[i] == -1))

1f (hasCycle (g, mkEdge(g,w,1)))
return 1;
} else 1if((g->edges[w][i] == 1) && i '= e.v) {
//if it is not the predecessor
return 1;

}
}

return 0;

DFS ALGORITHMS: CONNECTIVITY

Each vertex belongs to a connected component

The function connectedComponents sets up the
array cc to indicate which component contains

each vertex

(© O (4 2)
(0 (3 6%0

Component 0 Component 1 Component 2

CC olo o |1]1|]2]|]2]2]?2

0] [[(381 [81 (6l [7] [8]

DFS ALGORITHMS

Connectivity:
maintain an extra array cc for connected components

void connectedComponents (Graph g) { void connectedR (Graph g, Edge e) {
int v; int 1, w = e.w;
count = 0; prel[w] = count++;
ccCount = 0; st[w] = e.v;
pre = malloc (g->nV *sizeof (int)); cclw] = ccCount;
cc = malloc (g->nV *sizeof (int)); | | |
st = malloc (g->nV *sizeof (int)):; for (1=0; 1 < g->V; 1i++){
if ((g->edges[currV][i] == 1)
for (v = 0; v < g->nV; v++) | (pref[1] == -1)) A
pre[v] = -1; dfsR (g, mkEdge(g,w,1));
st(v] = -1; }
cclv] = -1; }

} }
for (v = 0; v < g->V; v++) {
if (prel[v] == -1) {
connectedR (g, mkEdge(g,v,Vv));
ccCount++;

BREADTH-FIRST SEARCH

What if we want the shortest path between two
vertices?

DFS doesn’t help us with this problem

To find the shortest path between v and any vertex w
we visit all the vertices adjacent to v (distance 1)

then all the vertices adjacent to those we visited in the first
step (distance 2)

DN S
% c/ é@é

o=

O

BREADTH-FIRST SEARCH

We observed previously that we can simply replace
the stack with a queue In the non-recursive
Implementation to get breadth -first search:

volid bfs (Graph g, Edge e) {
int 1;
Queue g = newQueue () ;
Queuedoin (g, e) ;
while (!QueuelIsEmpty(q)) {
e = Queueleave (q) ;
1f (prele.w] == -1) {

prele.w] = count++;
stle.w] = e.v;
for (1 = 0; 1 < g->nV; 1i++){

if ((g->edges[e.w][1i] != 0)&&

(pre[1] == -1)) {
Queuedoin (g,mkEdge(g,e.w,1));

IMPROVED BREADTH-FIRST SEARCH

We can mark them as visited as we put them on the
gueue since the queue will retain their order. Queue
will have at most V entries

void bfs (Graph g, Edge e) {
int 1i;
Queue g = newQueue () ;
Queuedoin (g, e);

prele.w] = count++;
st[e.w] = e.v;
while (!QueuelIsEmpty(q)) {
e = QueuelLeave (q);
for (1 = 0; 1 < g->V; 1i++) {
if ((g->edges[e.w][1] != 0)&&(pre[i] == -1)) {
Queuedoin (g,mkEdge(g,e.w,1));
pre[i1] = count++;

st[1] = e.w;

EXERCISE: BFS TRAVERSAL

Show the final state of the pre and st arrays
after bfs(g,0):

Write code to print out the shortest path from 0 to a
given vertex v using the st array.

BREADTH-FIRST SEARCH

For one BFS: O(V"2) for adjacency matrix and
O(V+E) for adjacency list

We can do BFS for every node as root node, and
store the resulting spanning trees in a V x V matrix
to store all the shortest paths between any two
vertices

To store and calculate these spanning trees, we
need

memory proportionalto V* V

time proportionalto V* E

Then, we can
return path length in constant time
path in time proportional to the path length

