
Graph Search
Computing 2 COMP1927 16x1

PROBLEMS ON GRAPHS

 What kinds of problems do we want to solve on/via
graphs?

 Is there a simple path from A to B

 Is the graph fully-connected?

 Can we remove an edge and keep it fully connected?

 Which vertices are reachable from v? (transitive
closure)

 What is the cheapest cost path from v to w?

 Is there a cycle that passes through all V? (tour)

 Is there a tree that links all vertices (spanning tree)

 What is the minimum spanning tree?

 Can a graph be drawn in a place with no crossing
edges?

 Are two graphs “equivalent”? (isomorphism)

GRAPH SEARCH

 We learn about properties of a graph by

systematically examining each of its vertices and

edges, for example

 to compute the degree of all vertices, we visit each

vertex and count it’s edges

 for path related properties, we have to move from vertex

to vertex, along the graphs edges

 We implement a general graph search algorithms

we can use to solve a wide range of graph

problems

SIMPLE PATH SEARCH

 Problem: is there a path from vertex v to vertex w ?

 Approach to solving problem:

 examine vertices adjacent to v

 if any of them is w, then we are done

 otherwise check if there is a path from any of the adjacent

vertices

 repeat looking further and further from v

 Two different approaches to order of searching:

breadth-first search (BFS), depth-first search (DFS)

BFS VS DFS PATH FINDING

 Is there a path from a to h?

DFS VS BFS APPROACHES

 DFS and BFS are closely related.

 Implementation differs only their use of a stack

or a queue

 BFS implemented via a queue of to-be-visited vertices

 DFS implemented via a stack of to-be-visited vertices

(or recursion)

 Both approaches ignore some edges and avoid

cycles by remembering previously visited vertices.

EXERCISE: DFS AND BFS TRAVERSAL

 Show the DFS order we visit to determine

isPath(a,k)

 Show the BFS order we visit to determine

isPath(a,k)

 Assume neighbours are chosen in alphabetical order

DEPTH FIRST SEARCH

 Basic approach to depth-first search:

 visit and mark current vertex

 for each neighbour, traverse it recursively

 Notes:

 need a mechanism for "marking" vertices

 in fact, we number them as we visit them

(so that we could later trace path through graph)

 Make use of three global variables:

 count ... counter to remember how many vertices

traversed so far

 pre[] ... array saying order in which each vertex was

visited (pre stands for preorder)

 st[] … array storing the predecessor of each vertex (st

stands for spanning tree)

9

DEPTH FIRST SEARCH TREE

 The edges traversed in a graph walk form a tree

 It corresponds to the call tree of the recursive dfs

function

 Represents the original graph minus any cycles

or alternate paths

 We can use a tree to encode the whole search

process

 Each time we visit a vertex we record the

previous vertex we came from - if the graph is

connected this forms a spanning tree

 We store this in the st array

DEPTH FIRST SEARCH (DFS)

0 2

6

1 7

3 4

5

// Assume we start with dummy Edge {0,0}

// assume we start with count = 0

// pre[v] = -1 for all v

// st[v] = -1 for all v (stores the predecessor)

// assume adjacency matrix representation

void dfsR (Graph g, Edge e) {

Vertex i, w = e.w;

pre[w] = count++;

st[w] = e.v;

for (i=0; i < g->V; i++){

if ((g->edges[w][i] == 1) && (pre[i] == -1)

dfsR (g, mkEdge(g,w,i));

}

}

}

0 1

2

34

5

67

DEPTH FIRST SEARCH (DFS)

0 2

6

1 7

3 4

5

0

2

6

4

3

5

7

1
• the edges traversed in the graph walk form a tree

• the tree corresponds to the call tree of the depth first search

•and to the contents of the st array - spanning tree

• pre contains the pre-ordering of the vertices

0 1 2 3 4 5 6 7

0 7 1 4 3 5 2 6

0 7 0 4 6 3 2 4

pre

st

0 1

2

34

5

67

PROPERTIES OF DFS FORESTS

 If a graph is not connected it will produce a spanning forest

 If it is connected it will form a spanning tree

 we call an edge connecting a vertex with an ancestor in the DFS tree
that is not its parent a back edge

0 2

6

1 7

3 4

5

0

2

6

4

3

5

7

1

back edge

EXERCISE: DFS TRAVERSAL

 Which vertices will be visited during dfs(g):

 How can we ensure that all vertices are visited?

GRAPH SEARCH FUNCTION

 The graph may not be connected

 We need to make sure that we visit every connected
component:

void dfSearch (Graph g) {

int v;

count = 0;

pre = malloc (sizeof (int) * g->nV));

st = malloc(sizeof (int) * g->nV));

for (v = 0; v < g->nV; v++){

pre[v] = -1;

st[v] = -1;

}

for (v = 0; v < g->V; v++) {

if (pre[v] == -1)

dfsR (g, mkEdge(g,v,v));

}

}

• The work complexity of the graph search algorithm is O(V2) for adjacency

matrix representation, and O(V+E) for adjacency list representation

EXERCISE: DFS TRAVERSAL

 Trace the execution of dfs(g,0) on:

 What if we were using DFS to search for a path

from 0..5? We would get 0-1-2-3-4-5. If we want the

shortest (least edges/vertices) path we need to use

BFS instead. See later slides for this.

EXERCISE: DFS TRAVERSAL

 Show the final state of the pre and st arrays

after dfs(g,0):

NON-RECURSIVE DEPTH FIRST SEARCH

 We can use a stack instead of recursion:

void dfs (Graph g, Edge e) {

int i;

Stack s = newStack();

StackPush (s,e);

while (!StackIsEmpty(s)) {

e = StackPop(s);

if (pre[e.w] == -1) {

pre[e.w] = count++;

st[e.w] = e.v;

for (i = 0; i < g->nV; i++) {

if ((g->edges[e.w][i] == 1)&&

(pre[i] == -1)) {

StackPush (s,mkEdge(g,e.w,i));

}

}

}

}

}

DFS ALGORITHMS: CYCLE DETECTION

 Cycle detection: does a given graph have any cycles?

 if and only if the DFS graph has back edges, it contains cycles

 we can easily detect this in the DFS search:

DFS ALGORITHMS: CYCLE DETECTION

 We are only checking for the existence of cycle, we are

not returning it

//Return 1 if there is a cycle

int hasCycle (Graph g, Edge e) {

int i, w = e.w;

pre[w] = count++;

st[w] = e.v;

for (i=0; i < g->V; i++){

if ((g->edges[w][i] == 1) && (pre[i] == -1)) {

if(hasCycle (g, mkEdge(g,w,i)))

return 1;

} else if((g->edges[w][i] == 1) && i != e.v){

//if it is not the predecessor

return 1;

}

}

return 0;

}

DFS ALGORITHMS: CONNECTIVITY

 Each vertex belongs to a connected component

 The function connectedComponents sets up the

array cc to indicate which component contains

each vertex

cc

void connectedR (Graph g, Edge e) {

int i, w = e.w;

pre[w] = count++;

st[w] = e.v;

cc[w] = ccCount;

for (i=0; i < g->V; i++){

if ((g->edges[currV][i] == 1) &&

(pre[i] == -1)) {

dfsR (g, mkEdge(g,w,i));

}

}

}

DFS ALGORITHMS

 Connectivity:

 maintain an extra array cc for connected components

void connectedComponents (Graph g) {

int v;

count = 0;

ccCount = 0;

pre = malloc (g->nV *sizeof (int));

cc = malloc (g->nV *sizeof (int));

st = malloc (g->nV *sizeof (int));

for (v = 0; v < g->nV; v++) {

pre[v] = -1;

st[v] = -1;

cc[v] = -1;

}

for (v = 0; v < g->V; v++) {

if (pre[v] == -1) {

connectedR (g, mkEdge(g,v,v));

ccCount++;

}

}

}

BREADTH-FIRST SEARCH

 What if we want the shortest path between two

vertices?

 DFS doesn’t help us with this problem

 To find the shortest path between v and any vertex w

 we visit all the vertices adjacent to v (distance 1)

 then all the vertices adjacent to those we visited in the first

step (distance 2)

0 2

6

1 7

3 4

5

0

7

16

2 3

4 5

BREADTH-FIRST SEARCH

 We observed previously that we can simply replace

the stack with a queue in the non-recursive

implementation to get breadth -first search:

void bfs (Graph g, Edge e) {

int i;

Queue q = newQueue();

QueueJoin(q,e);

while (!QueueIsEmpty(q)) {

e = QueueLeave(q);

if(pre[e.w] == -1){

pre[e.w] = count++;

st[e.w] = e.v;

for (i = 0; i < g->nV; i++){

if ((g->edges[e.w][i] != 0)&&

(pre[i] == -1)) {

QueueJoin (q,mkEdge(g,e.w,i));

}

}

}

}

}

IMPROVED BREADTH-FIRST SEARCH

 We can mark them as visited as we put them on the

queue since the queue will retain their order. Queue

will have at most V entries

void bfs (Graph g, Edge e) {

int i;

Queue q = newQueue();

QueueJoin (q,e);

pre[e.w] = count++;

st[e.w] = e.v;

while (!QueueIsEmpty(q)) {

e = QueueLeave(q);

for (i = 0; i < g->V; i++) {

if ((g->edges[e.w][i] != 0)&&(pre[i] == -1)) {

QueueJoin (q,mkEdge(g,e.w,i));

pre[i] = count++;

st[i] = e.w;

}

}

}

}

EXERCISE: BFS TRAVERSAL

 Show the final state of the pre and st arrays

after bfs(g,0):

Write code to print out the shortest path from 0 to a

given vertex v using the st array.

BREADTH-FIRST SEARCH

 For one BFS: O(V^2) for adjacency matrix and

O(V+E) for adjacency list

 We can do BFS for every node as root node, and

store the resulting spanning trees in a V x V matrix

to store all the shortest paths between any two

vertices

 To store and calculate these spanning trees, we

need

 memory proportional to V * V

 time proportional to V * E

 Then, we can

 return path length in constant time

 path in time proportional to the path length

