
Weighted Graphs
Computing 2 COMP1927 16x1

Sedgewick Part 5: Chapter 20.1 -20.4

21.1 - 21.3

WEIGHTED GRAPHS

 Some applications require us to consider a cost or

weight

 costs/weights are assigned to edges

 Often use a geometric interpretation of weights

 low weight - short edge

 high weight - long edge

 Weights are not always geometric

 Some weights can be negative

 this can make some problems more difficult!

 Assume in our graphs we have non-negative weights

EXAMPLE: WEIGHTED GRAPHS

 Example: “map” of airline flight routes

 vertices = airports

 edge = flights

 weights = distance/time/price

WEIGHTED GRAPH IMPLEMENTATION

 Adjacency Matrix Representation

 change 0 and 1 to float/double

 Need a special float constant to indicate NO_EDGE

 Can’t use 0. It may be a valid weight

 Adjacency Lists Representation

 add float weight to each node

 This will work for directed or undirected graphs

ADJACENCY MATRIX WITH WEIGHTS

ADJACENCY LIST REPRESENTATION WITH

WEIGHTS

WEIGHTED GRAPH PROBLEMS

 Minimum spanning tree

 find the minimal weight set of edges that connect all

vertices in a weighted graph

 might be more than one minimal solution

 we will assume undirected graph

 we will assume non-negative weights

 Shortest Path Problem
 Find minimum cost path to from one vertex to another

 Edges may be directed or undirected

 We will assume non-negative weights

MINIMAL SPANNING TREE PROBLEM

 Origins

 Otakar Boruvka, electrical engineer in 1926

 most economical construction of electric power network

 Some modern applications of MST:

 network layout: telephone, electric, computer, road, cable

 Has been studied intensely, still looking for faster

algorithms

9

MINIMUM SPANNING TREES (MST)

 Reminder: Spanning tree ST of graph G(V,E)

 ST is a subgraph of G

 (G'(V,E') where E' is a subset of E)

 ST is connected and acyclic

 Minimum spanning tree MST of graph G

 MST is a spanning tree of G

sum of edge weights is no larger than any other

ST

 Problem: how to (efficiently) find MST for graph G?

1
0

KRUSKAL’S MST ALGORITHM

 One approach to computing MST for graph

G(V,E):

 start with empty MST

 consider edges in increasing weight order

 add edge if it does not form a cycle in MST

 repeat until V-1 edges are added

 Critical operations:

 iterating over edges in weight order

 checking for cycles in a graph

1
1

EXECUTION TRACE OF KRUSKAL’S MST

1
2

EXERCISE: TRACE KRUSKAL’S

ALGORITHM

KRUSKAL’S ALGORITHM: MINIMAL SPANNING TREE

 Implementation 1: Two main parts:

 sorting edges according to their length (E * log E)

 check if adding an edge would create a cycle

 Could check for cycles using DFS ... but too expensive

 use Union-Find data structure from Sedgewick ch.1

 If we use this the cost of sorting dominates so over all

 E log E

 Implementation 2: Using a pq instead of full sort

 Create a priority queue using weights as priority

 Allows us to remove edges from pq in weighted order

 O(E + X *log V), with X = number of edges shorter than

the longest edge in the MST

1
4

PRIM’S ALGORITHM: MINIMAL SPANNING TREE

 Another approach to computing MST for graph
G(V,E):

 start from any vertex s and empty MST
 choose edge not already in MST to add to MST

must not contain a self-loop

must connect to a vertex already on MST

must have minimal weight of all such edges

 check to see whether adding the new edge
brought any of the non-tree vertices closer to the
tree

 repeat until MST covers all vertices

 Critical operations:
 checking for vertex being connected in a graph

 finding min weight edge in a set of edges

 updating min weights in a set of edges

PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex,

we successively add the shortest vertex connecting the

subgraph with the rest of the nodes to the tree

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

PRIM’S MST ALGORITHM

 Idea:

 Starting from a sub-graph containing only one vertex, we

successively add the shortest vertex connecting the sub-graph

with the rest of the nodes to the tree

 Edges in pink are in the fringe

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

WEIGHTED GRAPH: MINIMAL SPANNING TREE II

 Idea:

 Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

WEIGHTED GRAPH: MINIMAL SPANNING TREE II

 Idea:

 Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

WEIGHTED GRAPH: MINIMAL SPANNING TREE II

 Idea:

 Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph
with the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST

0

2

6

7

5 4

3

1

 0 – 1 (32)

 0 – 2 (29)

 0 – 5 (60)

 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46)

 6 – 7 (25)

PRIM’S ALGORITHM

 Prim’s algorithm is just a graph search –

 instead of depth first (using a stack) or breadth

first (using a queue),

we choose a shortest first` strategy using a

priority queue

 It can be implemented to run in

 O(E * log V) steps

if the steps listed above are implemented

efficiently (using adjacency lists and heap),

 O(V2) for adjacency matrix

See lecture code for an implementation

2
5

EXERCISE: TRACE PRIM’S ALGORITHM

SHORTEST PATHS

 Weight of a path p in graph G

 sum of weights on edges along path (weight(p))

 Shortest path between vertices s and t

 a simple path p where s = first(p), t = last(p)

 no other simple path q has weight(q) < weight(p)

 Problem: how to (efficiently) find

shortestPath(G,s,t)?

 Assumptions: weighted graph, no negative weights.

EXERCISE:

 What is the minimum spanning tree?

 What is the shortest path from 0 to 3?

 What is the least hops path (shortest unweighted

path) from 0 to 2?

0

1

2

3

0.2

0.1

0.3

0.4

0.4

SHORTEST PATH ALGORITHMS

• Shortest-path is useful in a wide range of
applications

 robot navigation

 finding routes in maps

 routing in data/computer networks

• Flavours of shortest-path

 source-target (shortest path from s to t)

 single-source (shortest paths from s to all other V)

 all-pairs (shortest paths for all (s,t) pairs)

DIJKSTRA’S ALGORITHM

SINGLE SOURCE SHORTEST PATHS

st

DIJKSTRA’S ALGORITHM:

SINGLE SOURCE SHORTEST PATH

 Given:

 weighted digraph/graph G, source vertex s

 Result:

 shortest paths from s to all other vertices

 dist[] : V-indexed array of distances from s

 st[] : V-indexed array of predecessors in shortest

path

 Note: shortest paths can be viewed as tree rooted at s

EDGE RELAXATION

 Relaxation along edge e from v to w

 dist[v] is length of some path from s to v

 dist[w] is length of some path from s to w

 if e gives shorter path s to w via v,

then update dist[w] and st[w]

 Relaxation updates data on w if we find a shorter path to s.

if (dist[v] + e.weight < dist[w]) {

dist[w] = dist[v] + e.weight;

st[w] = v;

}

st[v] = ?, st[w] = ? st[v] = ?, st[w] = v

DIJKSTRA’S ALGORITHM

 Data:

 G, s, dist[], st[], and a pq containing the set of vertices

whose shortest path from s is not yet known

 Algorithm:

 initialise dist[] to all ∞, except dist[s]=0

 Initialise pq with all V, with dist[v] as priority

 v = deleteMin from pq

 Get e’s that connect v to w in pq

 relax along e if new dist is better

 repeat until pq is empty

EXECUTION TRACE OF DIJKSTRA’S

ALGORITHM

...EXECUTION TRACE OF DIJKSTRA’S

ALGORITHN

...EXECUTION TRACE OF DIJKSTRA’S

ALGORITHM

DIJKSTRA’S RESULTS

 After the algorithm has completed:

 Shortest Path distances are in dist array

 Actual path can be traced back from endpoint via the

predecessors in the st array

EXERCISE

 Assume we have just completed running Dijkstra’s

algorithm with starting vertex v. Write code to print

out the path from vertex v to w or “No path” if the

path does not exist. (It is ok to print it in reverse

order.)

TRACE EXECUTION OF DIJKSTRA’S ALGORITHM

FROM STARTING VERTEX 2

