Welighted Graphs

Computing 2 COMP1927 16x1

Sedgewick Part 5: Chapter 20.1 -20.4
21.1-21.3

WEIGHTED GRAPHS

Some applications require us to consider a cost or
weight
costs/weights are assigned to edges
Often use a geometric interpretation of weights
low weight - short edge
high weight - long edge
Weights are not always geometric

Some weights can be negative
this can make some problems more difficult!
Assume in our graphs we have non-negative weights

EXAMPLE: WEIGHTED GRAPHS

Example: “map” of airline flight routes
vertices = airports
edge = flights
weights = distance/time/price

34209

WEIGHTED GRAPH IMPLEMENTATION

Adjacency Matrix Representation
change 0 and 1 to float/double
Need a special float constant to indicate NO EDGE
Can’t use 0. It may be a valid weight

Adjacency Lists Representation
add float weight to each node

This will work for directed or undirected graphs

0.6

Weighted Digraph

0 9

A~ WON—= O

ADJACENCY MATRIX WITH WEIGHTS

O 1 2 3 4
* 102104 » *
« [0.3]10.6] « *
* 05| ~ |0.1] »
0.5] = * * | 0.9
* « | 0./ * *

Adjacency Matrix

ADJACENCY LIST REPRESENTATION WITH
WEIGHTS

0.7 0 4 1102204
® o[~
0.2[. 0.1 =03 2] 06
a}@{ 0.9 2| —t+»|1|05FH=3|0./
g_))/m' U.% o M N 0|0.7F=4]0.9
0.3 4 "‘x\\
210.1

Weighted Digraph
Adjacency Lists

WEIGHTED GRAPH PROBLEMS

o Minimum spanning tree

find the minimal weight set of edges that connect all
vertices in a weighted graph
might be more than one minimal solution

we will assume undirected graph
we will assume non-negative weights

o Shortest Path Problem
Find minimum cost path to from one vertex to another
Edges may be directed or undirected
We will assume non-negative weights

MINIMAL SPANNING TREE PROBLEM

Origins
Otakar Boruvka, electrical engineer in 1926
most economical construction of electric power network

Some modern applications of MST:
network layout: telephone, electric, computer, road, cable

Has been studied intensely, still looking for faster
algorithms

MINIMUM SPANNING TREES (MST)

Reminder: Spanning tree ST of graph G(V,E)
ST is a subgraph of G
(G'(V,E’) where E' is a subset of E)
ST is connected and acyclic
Minimum spanning tree MST of graph G
MST is a spanning tree of G

sum of edge weights is no larger than any other
ST
Problem: how to (efficiently) find MST for graph G?

KRUSKAL'S MST ALGORITHM

One approach to computing MST for graph
G(V,E):

start with empty MST

consider edges In increasing weight order

acC

d edge if it does not form a cycle in MST

e
Critica

peat until V-1 edges are added
| operations:

iterating over edges in weight order
checking for cycles in a graph

0T

EXECUTION TRACE OF KRUSKAL'S MST

1

After step 3 After step 4a After step 4b

EXERCISE: TRACE KRUSKAL'S
ALGORITHM

A)

KRUSKAL'S ALGORITHM: MINIMAL SPANNING TREE

Implementation 1: Two main parts:
sorting edges according to their length (E * log E)

check if adding an edge would create a cycle
Could check for cycles using DFS ... but too expensive
use Union-Find data structure from Sedgewick ch.1

If we use this the cost of sorting dominates so over all
Elog E

Implementation 2: Using a pq instead of full sort
Create a priority queue using weights as priority

Allows us to remove edges from pg in weighted order

O(E + X *log V), with X = number of edges shorter than
the longest edge in the MST

PRIM'S ALGORITHM: MINIMAL SPANNING TREE

Another approach to computing MST for graph
G(V,E):
start from any vertex s and empty MST
choose edge not already In MST to add to MST
must not contain a self-loop
must connect to a vertex already on MST
must have minimal weight of all such edges

check to see whether adding the new edge
brought any of the non-tree vertices closer to the
tree

repeat until MST covers all vertices

Critical operations:
checking for vertex being connected in a graph
finding min weight edge in a set of edges
updating min weights in a set of edges

i

PRIM'S MST ALGORITHM

|dea:

Starting from a subgraph containing only one vertex,
we successively add the shortest vertex connecting the
subgraph with the rest of the nodes to the tree
0-1(32)
0-2(29)
0 — 5 (60)
0 -6 (51)
0-7(31)
1-7(21)
3—4(34)
3-5(18)
4 — 5 (40)
4 -6 (51)
4 — 7 (46)
6 —7 (25)

PRIM'S MST ALGORITHM
ldea:

Starting from a sub-graph containing only one vertex, we
successively add the shortest vertex connecting the sub-graph
with the rest of the nodes to the tree

L . . 0-1(32)
Edges in pink are in the fringe 0— 2 (29)
0 — 5 (60)
0 -6 (51)
0-7(31)

1-7(21)

3 -4 (34)
3-5(18)
4 — 5 (40)
4 -6 (51)
4 — 7 (46)
6 —7 (25)

PRIM'S MST ALGORITHM

|dea:

Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

Edges in pink are in the fringe

Edges in black bold are in the MST 0-1(32)

0 — 2 (29)
0 — 5 (60)
0 -6 (51)
0 -7 (31)
1-7(21)
3 — 4 (34)
3 -5 (18)
4 — 5 (40)
4 -6 (51)
4 — 7 (46)
6 — 7 (25)

...........

WEIGHTED GRAPH: MINIMAL SPANNING TREE I

ldea:

Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

Edges in pink are in the fringe 0-1(32)
Edges in black bold are in the MST 0-2(29)

0-5 (60)
0-6 (51)
0-7(31)
1-7(21)
3—-4(34)
3 -5(18)
4 -5 (40)
4 -6 (51)
4 — 7 (46)
6 —7 (25)

WEIGHTED GRAPH: MINIMAL SPANNING TREE I

ldea:

Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

Edges in pink are in the fringe 0-1(32)
Edges in black bold are in the MST 0-2(29)

0 -5 (60)
0-6 (51)
0-7(31)
1-7(21)
3—-4(34)
3 -5(18)
4 -5 (40)
4 -6 (51)
4 — 7 (46)
6 —7 (25)

WEIGHTED GRAPH: MINIMAL SPANNING TREE |

ldea:

Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

Edges in pink are in the fringe 0-1(32)
Edges in black bold are in the MST 0-2(29)
0 -5 (60)
0-6 (51)
0-7(31)
1-7(21)
3—-4(34)
3 -5(18)
4 -5 (40)
4 -6 (51)
4 — 7 (46)
6 —7 (25)

PRIM'S MST ALGORITHM

ldea:

Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph
with the rest of the nodes to the tree
Edges in pink are in the fringe 0-1(32)
0-2(29)

0 — 5 (60)
0 -6 (51)
0-7(31)
1-7(21)
3 -4 (34)
3-5(18)
4 — 5 (40)
4 -6 (51)
4 — 7 (46)
6 —7 (25)

PRIM'S MST ALGORITHM

ldea:

Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

Edges in pink are in the fringe 0-1(32)
Edges in black bold are in the MST 0-2(29)
0 -5 (60)
0-6 (51)
0-7(31)
1-7(21)
3—-4(34)
3 -5(18)
4 -5 (40)
4 -6 (51)
4 — 7 (46)
6 —7 (25)

PRIM'S MST ALGORITHM

ldea:

Starting from a subgraph containing only one vertex, we
successively add the shortest vertex connecting the subgraph with
the rest of the nodes to the tree

Edges in pink are in the fringe 0-1(32)
Edges in black bold are in the MST 0-2(29)
0 -5 (60)
0-6 (51)
0-7(31)
1-7(21)
3—-4(34)
3-5(18)
4 -5 (40)
4 -6 (51)
4 — 7 (46)
6 —7 (25)

PRIM'S ALGORITHM

Prim’s algorithm is just a graph search —

iInstead of depth first (using a stack) or breadth
first (using a queue),
we choose a shortest first” strategy using a
priority queue

It can be implemented to run In
O(E * log V) steps
If the steps listed above are implemented
efficiently (using adjacency lists and heap),

O(V?) for adjacency matrix
See lecture code for an implementation

EXERCISE: TRACE PRIM'S ALGORITHM

G¢

SHORTEST PATHS

Weight of a path p in graph G

sum of weights on edges along path (weight(p))
Shortest path between vertices s and t

a simple path p where s = first(p), t = last(p)

no other simple path g has weight(q) < weight(p)

Problem: how to (efficiently) find
shortestPath(G,s,t)?

Assumptions: weighted graph, no negative weights.

EXERCISE:

What Is the minimum spanning tree?
What is the shortest path from 0 to 3?

What Is the least hops path (shortest unweighted
path) from O to 27

SHORTEST PATH ALGORITHMS

Shortest-path is useful in a wide range of
applications

robot navigation
finding routes in maps
routing in data/computer networks

Flavours of shortest-path

source-target (shortest path from s to t)
single-source (shortest paths from s to all other V)
all-pairs (shortest paths for all (s,t) pairs)

DIJKSTRA'S ALGORITHM
SINGLE SOURCE SHORTEST PATHS

Weighted Digraph

Vi 0 1

2

3

4

dist | 0 [0.3

0.7

1.1

inf

. st 0

0

2

Shortest paths from s=0

DIJKSTRA'S ALGORITHM:
SINGLE SOURCE SHORTEST PATH

Given:
weighted digraph/graph G, source vertex s

o Result:
shortest paths from s to all other vertices

dist[] : V-Indexed array of distances from s
st[] : V-Indexed array of predecessors in shortest
path

Note: shortest paths can be viewed as tree rooted at s

EDGE RELAXATION

Relaxation along edge e from v to w
dist[v] is length of some path from stov
dist|w] Is length of some path from s to w

If e gives shorter path s to w via v,
then update distjw] and st|w]

Relaxation updates data on w if we find a shorter path to s.

o dist=12 O
@Jf___fr o ' S _.__@ @ O O @
T /-f T
3
dist[v]=8, dist[w]=12 dist [v]=8, dist[w]=11
stlv] =72, stlw] =7 st[v] = ?, st[w] = v

1f (dist[v] + e.weight < dist[w]) {
dist[w] = dist[v] + e.weilight;

st[w] = v;

DIJKSTRA'S ALGORITHM

Data:

G, s, dist[], st[], and a pg containing the set of vertices
whose shortest path from s is not yet known

Algorithm:
initialise dist[] to all «, except dist[s]=0
Initialise pq with all V, with dist[v] as priority
v = deleteMin from pq
Get e’s that connect v to w in pq

relax along e if new dist is better

repeat until pg is empty

EXECUTION TRACE OF DIJKSTRA'S
ALGORITHM

0] M1 [2] [3] [4]
dist | O |inf |inf|inf| inf

st |- | -[-1-1-

Pda {0,1,2,3,4}

0] [1] [2 [3] [4]
dist | 0 [0.3]|inf |0.7] inf

st -1 0|l -=10 -

Pq {1,2,3,4}

...EXECUTION TRACE OF DIJKSTRA'S

ALGORITHN

After 1 visited

o (2

3
¥ :
5"{‘ dist
0.6
a

st

After 2 visited P49

0] [11 [2 [3] [4]
0 |0.3|0.7|0.7| Inf
—To[1]o0 -

(2,3,4)

0] [11 [2] [3] [4]
0 [0.3]0.7]0.7] 1.2
— 0 1 0|2

{3,4}

...EXECUTION TRACE OF DIJKSTRA'S
ALGORITHM

(0] [1] [2 [38] [4]
dist | 0 [0.3|0.7(0.7|1.2

ST = D 1 0 2

(@

After jtm'xftsd' pg {4}

0] [[[3] [4]
dist | 0 |10.3|0.7]{0.7|1.2

st| = O|1T[0]2

© 0.8 O pg {}
After 4visited

DIJKSTRA'S RESULTS

After the algorithm has completed:
Shortest Path distances are in dist array

Actual path can be traced back from endpoint via the
predecessors in the st array

EXERCISE

Assume we have just completed running Dijkstra’s
algorithm with starting vertex v. Write code to print
out the path from vertex v to w or “No path” if the

path does not exist. (It is ok to print it In reverse
order.)

TRACE EXECUTION OF DIJKSTRA'S ALGORITHM
FROM STARTING VERTEX 2

