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WEIGHTED GRAPHS

 Some applications require us to consider a cost or 

weight

 costs/weights are assigned to edges

 Often use a geometric interpretation of weights

 low weight - short edge

 high weight  - long edge

 Weights are not always geometric

 Some weights can be negative

 this can make some problems more difficult!

 Assume in our graphs we have non-negative weights



EXAMPLE: WEIGHTED GRAPHS

 Example: “map” of airline flight routes

 vertices = airports

 edge = flights

 weights = distance/time/price



WEIGHTED GRAPH IMPLEMENTATION

 Adjacency Matrix Representation

 change 0 and 1 to float/double

 Need a special float constant to indicate NO_EDGE

 Can’t use 0. It may be a valid weight

 Adjacency Lists Representation

 add float weight to each node

 This will work for directed or undirected graphs



ADJACENCY MATRIX WITH WEIGHTS



ADJACENCY LIST REPRESENTATION WITH

WEIGHTS



WEIGHTED GRAPH PROBLEMS

 Minimum spanning tree

 find the minimal weight set of edges that connect all 

vertices in a weighted graph

 might be more than one minimal solution

 we will assume undirected graph

 we will assume non-negative weights

 Shortest Path Problem
 Find minimum cost path to from one vertex to another

 Edges may be directed or undirected

 We will assume non-negative weights



MINIMAL SPANNING TREE PROBLEM

 Origins

 Otakar Boruvka, electrical engineer in 1926 

 most economical construction of electric power network 

 Some modern applications of MST: 

 network layout: telephone, electric, computer, road, cable

 Has been studied intensely, still looking for faster 

algorithms
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MINIMUM SPANNING TREES (MST)

 Reminder: Spanning tree ST of graph G(V,E)

 ST is a subgraph of G

 (G'(V,E') where E' is a subset of E) 

 ST is connected and acyclic

 Minimum spanning tree MST of graph G

 MST is a spanning tree of G

sum of edge weights is no larger than any other 

ST 

 Problem: how to (efficiently) find MST for graph G?
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KRUSKAL’S MST ALGORITHM

 One approach to computing MST for graph 

G(V,E): 

 start with empty MST 

 consider edges in increasing weight order 

 add edge if it does not form a cycle in MST 

 repeat until V-1 edges are added 

 Critical operations: 

 iterating over edges in weight order 

 checking for cycles in a graph 
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EXECUTION TRACE OF KRUSKAL’S MST
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EXERCISE: TRACE KRUSKAL’S

ALGORITHM



KRUSKAL’S ALGORITHM: MINIMAL SPANNING TREE

 Implementation 1: Two main parts:

 sorting edges according to their length (E * log E)

 check if adding an edge would create a cycle 

 Could check for cycles using DFS ... but too expensive 

 use Union-Find data structure from Sedgewick ch.1 

 If we use this the cost of sorting dominates so over all 

 E log E

 Implementation 2: Using a pq instead of full sort

 Create a priority queue using weights as priority

 Allows us to remove edges from pq in weighted order

 O(E + X *log V), with X = number of edges shorter than 

the longest edge in the MST
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PRIM’S ALGORITHM: MINIMAL SPANNING TREE

 Another approach to computing MST for graph 
G(V,E): 

 start from any vertex s and empty MST 
 choose edge not already in MST to add to MST 

must not contain a self-loop 

must connect to a vertex already on MST 

must have minimal weight of all such edges

 check to see whether adding the new edge 
brought any of the non-tree vertices closer to the 
tree

 repeat until MST covers all vertices

 Critical operations: 
 checking for vertex being connected in a graph 

 finding min weight edge in a set of edges

 updating min weights in a set of edges 



PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, 

we successively add  the shortest vertex connecting the 

subgraph with the rest of the nodes to the tree
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PRIM’S MST ALGORITHM

 Idea:

 Starting from a sub-graph containing only one vertex, we 

successively add  the shortest vertex connecting the sub-graph 

with the rest of the nodes to the tree

 Edges in pink are in the fringe
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PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, we 
successively add  the shortest vertex connecting the subgraph with 
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST
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WEIGHTED GRAPH: MINIMAL SPANNING TREE II

 Idea:

 Starting from a subgraph containing only one vertex, we 
successively add  the shortest vertex connecting the subgraph with 
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST
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 0 – 1 (32)
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 0 – 6 (51)

 0 – 7 (31)

 1 – 7 (21)

 3 – 4 (34)

 3 – 5 (18)

 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46) 

 6 – 7 (25)



WEIGHTED GRAPH: MINIMAL SPANNING TREE II

 Idea:

 Starting from a subgraph containing only one vertex, we 
successively add  the shortest vertex connecting the subgraph with 
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST
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 4 – 7 (46) 

 6 – 7 (25)



WEIGHTED GRAPH: MINIMAL SPANNING TREE II

 Idea:

 Starting from a subgraph containing only one vertex, we 
successively add  the shortest vertex connecting the subgraph with 
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST
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 4 - 6 (51)

 4 – 7 (46) 

 6 – 7 (25)



PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, we 
successively add  the shortest vertex connecting the subgraph
with the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST
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 4 – 5 (40)

 4 - 6 (51)

 4 – 7 (46) 

 6 – 7 (25)



PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, we 
successively add  the shortest vertex connecting the subgraph with 
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST
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 4 – 7 (46) 

 6 – 7 (25)



PRIM’S MST ALGORITHM

 Idea:

 Starting from a subgraph containing only one vertex, we 
successively add  the shortest vertex connecting the subgraph with 
the rest of the nodes to the tree

 Edges in pink are in the fringe

 Edges in black bold are in the MST
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 6 – 7 (25)



PRIM’S ALGORITHM

 Prim’s algorithm is just a graph search –

 instead of depth  first (using a stack)  or breadth 

first (using a queue), 

we choose a  shortest first` strategy using a 

priority queue

 It can be implemented to run in 

 O(E * log V) steps 

if the steps listed above are implemented 

efficiently (using adjacency lists and heap), 

 O(V2) for adjacency matrix

See lecture code for an implementation
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EXERCISE: TRACE PRIM’S ALGORITHM



SHORTEST PATHS

 Weight of a path p in graph G 

 sum of weights on edges along path (weight(p)) 

 Shortest path between vertices s and t 

 a simple path p where s = first(p), t = last(p) 

 no other simple path q has weight(q) < weight(p) 

 Problem: how to (efficiently) find 

shortestPath(G,s,t)? 

 Assumptions: weighted graph, no negative weights.



EXERCISE: 

 What is the minimum spanning tree?

 What is the shortest path from 0 to 3?

 What is the least hops path (shortest unweighted 

path) from 0 to 2?
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SHORTEST PATH ALGORITHMS

• Shortest-path is useful in a wide range of 
applications 

 robot navigation 

 finding routes in maps 

 routing in data/computer networks 

• Flavours of shortest-path 

 source-target (shortest path from s to t) 

 single-source (shortest paths from s to all other V) 

 all-pairs (shortest paths for all (s,t) pairs) 



DIJKSTRA’S ALGORITHM

SINGLE SOURCE SHORTEST PATHS

st



DIJKSTRA’S ALGORITHM: 

SINGLE SOURCE SHORTEST PATH

 Given: 

 weighted digraph/graph G, source vertex s

 Result: 

 shortest paths from s to all other vertices

 dist[] : V-indexed array of distances from s

 st[] : V-indexed array of predecessors in shortest 

path 

 Note: shortest paths can be viewed as tree rooted at s



EDGE RELAXATION

 Relaxation along edge e from v to w 

 dist[v] is length of some path from s to v 

 dist[w] is length of some path from s to w 

 if e gives shorter path s to w via v, 

then update dist[w] and st[w] 

 Relaxation updates data on w if we find a shorter path to s.

if (dist[v] + e.weight < dist[w]) { 

dist[w] = dist[v] + e.weight; 

st[w] = v; 

} 

st[v] = ?, st[w] = ? st[v] = ?, st[w] = v 



DIJKSTRA’S ALGORITHM

 Data: 

 G, s, dist[], st[], and a pq containing the set of vertices 

whose shortest path from s is not yet known 

 Algorithm: 

 initialise dist[] to all ∞, except dist[s]=0

 Initialise pq with all V, with dist[v] as priority 

 v = deleteMin from pq

 Get e’s that connect v to w in pq  

 relax along e if new dist is better

 repeat until pq is empty



EXECUTION TRACE OF DIJKSTRA’S

ALGORITHM



...EXECUTION TRACE OF DIJKSTRA’S

ALGORITHN



...EXECUTION TRACE OF DIJKSTRA’S

ALGORITHM



DIJKSTRA’S RESULTS

 After the algorithm has completed:

 Shortest Path distances are in dist array

 Actual path can be traced back from endpoint via the 

predecessors in the st array



EXERCISE

 Assume we have just completed running Dijkstra’s 

algorithm with starting vertex v. Write code to print 

out the path from vertex v to w or “No path” if the 

path does not exist. (It is ok to print it in reverse 

order.)



TRACE EXECUTION OF DIJKSTRA’S ALGORITHM

FROM STARTING VERTEX 2 


