
HASH TABLES



HASHING

 Key indexed arrays had perfect search performance 

O(1)

 But required a dense range of index values

 Otherwise memory is wasted

 Hashing allows us to approximate this performance 

but

 Allows arbitrary types of keys

 Map(hash) keys into compact range of index values

 Items are stored in an array accessed by this index value

 Allows us to approach the ideal of 

title[hashfunction(“COMP1927”)] = “Computing 2”;



HASHING

 A hash table implementation consists of two main 

parts:

(1) A hash function to map each key to an index in the hash 

table (array of size N). 

 Key->[0..N-1] 

(2) A collision resolution so that

 if hash table at the calculated index is already occupied with an 

item with a different key, an alternative slot can be found

 Collisions are inevitable when dom(Key) > N



HASH FUNCTIONS

 Requirements:

 if the table has TableSize entries, we need to hash keys to 
[0..TableSize-1]

 the hash function should be cheap to compute

 the hash function should ideally map the keys evenly to the 

index values - that is, every index should be generated with 

approximately the same probability

 this is easy if the keys have a random distribution, but requires 

some thought otherwise

 Simple method to hash keys: modular hash function

• compute i%TableSize

• choose TableSize to be prime



HASHING STRING KEYS

 Consider this potential hash function:

 we can turn a string into an Integer value:

int hash (char *v, int TableSize) {

int h = 0, i = 0;

while (v[i] != ‘\0’) {

h = h + v[i];

i++;

}

return h % TableSize;

}

 What is wrong with this function?

 How can it be improved?



HASHING STRING KEYS

• A better hash function:

int hash (char *v, int TableSize) {

int h = 0, i = 0;

int a = 127; //prime number 

while (v[i] != ‘\0’) {

h = (a*h + v[i]) % TableSize;

i++;

}

return h;

}



HASHING STRING KEYS

 Universal hash function for string keys:

 Uses all of value in hash, with suitable randomization

int hashU (char *v, int TableSize) {

int h = 0, i = 0;

int a = 31415, b = 27183;

while (v[i] != ‘\0’) {

h = (a*h + v[i]) % TableSize;

a = a*b% (TableSize-1);

i++;

}

return h;

}



REAL HASH FUNCTION

//from PostgreSQL DBMS

hash_any(unsigned char *k, register int keylen, int N) { 

register uint32 a, b, c, len; 

// set up internal state 

len = keylen; 

a = b = 0x9e3779b9; c = 3923095; 

// handle most of the key, in 12-char chunks 

while (len >= 12) { 

a += (k[0] + (k[1] << 8) + (k[2] << 16) + (k[3] << 24)); 

b += (k[4] + (k[5] << 8) + (k[6] << 16) + (k[7] << 24)); 

c += (k[8] + (k[9] << 8) + (k[10] << 16) + (k[11] << 24)); 

mix(a, b, c); 

k += 12; 

len -= 12; 

} 

// collect any data from remaining bytes into a,b,c

mix(a, b, c); return c % N; }



COLLISION RESOLUTION: SEPARATE

CHAINING

 What do we do if two entries have the same array 

index?

 maintain a list of entries per array index (separate 

chaining)

 use the next entry in the hash table (linear probing)

 use a key dependent increment for probing (double 

hashing)



SEPARATE CHAINING

 Can be viewed as a generalisation of sequential search

 Reduces number of comparisons by a factor of TableSize

 See lecture code for implementation

0

1

2

3

4

5

6

7

8

9

“hi” “ci” “li”

“ra”

“as” “is”

“fr”



SEPARATE CHAINING

 Cost Analysis:

 N array entries(slots), M stored items

 Best case: all lists are the same length

 M/N

 Worst case: one list of size M all the rest are size 0

 If good hash and M<= N, cost is 1

 If good hash and M> N, cost is M/N

 Ratio of items/slots is called load α = M/N



LINEAR PROBING

 Resolve collision in the primary table:

 if the table is not close to be full, there are many empty 

slots, even if we have a collision

 in case of a collision, simply use the next available slot

 this is an instance of open-addressing hashing



LINEAR PROBING: DELETION

Need to delete and reinsert all values after the index

we delete at, till we reach a slot with no value



LINEAR PROBING

 Cost Analysis:

 Cost to reach location where item is mapped is O(1), 

but then we may have to scan along to find it in the 

worst case this could be O(M)

 affected by the load factor M/N

 Problems

 When the table is starting to fill up, we can get clusters

 Inserting an item with one hash value can increase 

access time for items with other hash values

 Linear probing can become slow for near full hash 

tables



DOUBLE HASHING

 To avoid clustering, we use a second hash function to determine 
a fixed increment to check for empty slots in the table:

index determined by

first hash function

increment determined by

second hash function



DOUBLE HASHING

 Requirements for second hashing function:

 must never evaluate to zero

 increment should be relatively prime to the hash table 

size 

 This ensures all elements are visited

 To generate relatively prime set table size to prime 

e.g. N=127 

 hash2() in range [1..N1] where N1 < 127 and prime 

 Can be significantly faster than linear probing 

especially if the table is heavily loaded.



DYNAMIC HASH TABLES

 All the hash table methods we looked at so far have 

the same problem 

 once the hash table gets full, the search and insertion 

times increases due to collisions

 Solution:

 grow table dynamically

 this involves copying of table content, amortised over 

time by reduction of collisions



EVALUATION

 Choice of the hash function can significantly effect 

the performance of the implementation, in particular 

when the hash table starts to fill up

 Choice of collision methods influences performance 

as well

 linear probing (fastest, given table is sufficiently big)

 double hashing (makes most efficient use of memory, 

req. 2nd hash function, fastest if table load is higher)

 separate chaining (easiest to implement. table load can 

be more than 1 but performance degrades) 


