HASH TABLES

HASHING

Key indexed arrays had perfect search performance
O(1)
But required a dense range of index values
Otherwise memory Is wasted

Hashing allows us to approximate this performance
but

Allows arbitrary types of keys

Map(hash) keys into compact range of index values

ltems are stored in an array accessed by this index value

Allows us to approach the ideal of
title[hashfunction("COMP19277)] = “Computing 27;

HASHING

A hash table implementation consists of two main
parts:
A hash function to map each key to an index in the hash
table (array of size N).
Key->[0..N-1]
A collision resolution so that

If hash table at the calculated index is already occupied with an
item with a different key, an alternative slot can be found

Collisions are inevitable when dom(Key) > N

HASH FUNCTIONS

Requirements:
If the table has TableSize entries, we need to hash keys to
[0..TableSize-1]
the hash function should be cheap to compute

the hash function should ideally map the keys evenly to the
Index values - that Is, every index should be generated with

approximately the same probability

this is easy Iif the keys have a random distribution, but requires
some thought otherwise

o Simple method to hash keys: modular hash function
compute 1%TableSize
choose TableSize to be prime

HASHING STRING KEYS

o Consider this potential hash function:

we can turn a string into an Integer value:

int hash (char *v, 1int TableSize) {
int h =0, 1 = 0;
while (v[1] !'= “\0’) {
h =h + v[i];
1++;

return h % TableSize;

}

o What is wrong with this function?

How can it be improved?

HASHING STRING KEYS

* A better hash function:

int hash (char *v, i1nt TableSize)

int h = 0, 1 = 0;
int a = 127; //prime number
while (v[1i] !'= “\0’) {
h = (a*h + v[1]) % TableSize;
i++;

J

return h;

{

HASHING STRING KEYS

o Universal hash function for string keys:

Uses all of value in hash, with suitable randomization

int hashU (char *v, int TableSize) {
int h = 0, 1 = 0;
int a = 31415, b = 27183;
while (v[i] !'= “\0’) {
h = (a*h + v[1]) % TableSize;
= a*b% (TableSize-1);

return h;

REAL HASH FUNCTION
/ /from PostgreSQL DBMS

hash any(unsigned char *k, register 1int keylen, 1int N) {
register uint32 a, b, ¢, len;
// set up internal state
len = keylen;
a = b = 0x9%9e377909; ¢ = 3923095;
// handle most of the key, in 12-char chunks
while (len >= 12) {
a += (k[0] + (k[1l] << 8) + (k[2] << 16) + (k[3] << 24)
b += (k[4] + (k[5] << 8) + (k[6] << 1lo) + (k[7] << 24)
c += (k[8] + (k[9 + (k[10] << 16) + (k[11] << 2
mix (a, b, c¢)
k += 12;
len -= 12;

14

)
)
4

<< 8))) s

4

}

// collect any data from remaining bytes into a,b,c

mix(a, b, c¢); return c % N; }

COLLISION RESOLUTION: SEPARATE
CHAINING

o What do we do if two entries have the same array
iIndex?
maintain a list of entries per array index (separate
chaining)
use the next entry in the hash table (linear probing)

use a key dependent increment for probing (double
hashing)

SEPARATE CHAINING

Can be viewed as a generalisation of sequential search

Reduces number of comparisons by a factor of tablesize

See lecture code for implementation

“is”

— uhiu o+—> “Qi” o+ uli” []

“ra”

CTCTCTCTCQ

SEPARATE CHAINING

Cost Analysis:
N array entries(slots), M stored items

Best case: all lists are the same length
M/N

Worst case: one list of size M all the rest are size O
If good hash and M<= N, costis 1
If good hash and M> N, cost is M/N

Ratio of items/slots Is called load a = M/N

LINEAR PROBING

o Resolve collision in the primary table:

If the table is not close to be full, there are many empty
slots, even if we have a collision

In case of a collision, simply use the next available slot

this Is an instance of open-addressing hashing

insert k=22 insert k=15
hash(22) = 2 hash(15) =5
Ig?n k=1 Ig?n Ig?‘n Ig?‘n =5 | k=6 Item nr:?n k=19
0] 01 [2] (31 1[4 [5] [6] [7] (8] 9]
insert k=36
hash(36) = 6

where a[7] now contains 15

LINEAR PROBING: DELETION

Need to delete and reinsert all values after the index
we delete at, till we reach a slot with no value

ltr:?n k=11 ltr:*:n |tr;ﬁ1 "r;i k=5 | k=6 | k=15 | k=25 | k=19
O] [11 [2] [3] [4] [51 [6] [71 [8] [9]
delete(k=5) N
I'g?n k=11 Itr:fn |t|:ﬁ1 IhNeﬁ1 =15 | k=B | k=25 Itr:?n k=18
O] [11 [2] [3] [4] [51 [6] [71 [8] [9]

LINEAR PROBING

Cost Analysis:

Cost to reach location where item is mapped is O(1),
but then we may have to scan along to find it in the

worst case this could be O(M)
affected by the load factor M/N

Problems
When the table is starting to fill up, we can get clusters

Inserting an item with one hash value can increase
access time for items with other hash values

Linear probing can become slow for near full hash
tables

DOUBLE HASHING

To avoid clustering, we use a second hash function to determine
a fixed increment to check for empty slots in the table:

(Increment determined by

second hash function

Index determined by
first hash function

DOUBLE HASHING

Requirements for second hashing function:
must never evaluate to zero

Increment should be relatively prime to the hash table
size
This ensures all elements are visited

To generate relatively prime set table size to prime
e.qg. N=127

hash2() in range [1..N1] where N1 < 127 and prime

Can be significantly faster than linear probing
especially If the table i1s heavily loaded.

DYNAMIC HASH TABLES

All the hash table methods we looked at so far have
the same problem

once the hash table gets full, the search and insertion
times increases due to collisions

Solution:
grow table dynamically

this involves copying of table content, amortised over
time by reduction of collisions

EVALUATION

C

hoice of the hash function can significantly effect

the performance of the implementation, in particular

W
C

nen the hash table starts to fill up
noice of collision methods influences performance

as well

linear probing (fastest, given table is sufficiently big)

double hashing (makes most efficient use of memory,
reg. 2nd hash function, fastest if table load is higher)

separate chaining (easiest to implement. table load can
be more than 1 but performance degrades)

