
7/03/2016, 9:44 PMWeek 02 Lecture

Page 1 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

Week 02 Lecture

Storage Management

Storage Management 2/58

Aims of storage management in DBMS:

provide view of data as collection of tables/tuples
map from database objects (e.g. tables) to disk files
manage transfer of data to/from disk storage
use buffers to minimise disk/memory transfers
interpret loaded data as tuples/records
give foundation for file structures used by access methods

... Storage Management 3/58

Levels of DBMS related to storage management:

... Storage Management 4/58

Consider the query:

select student, course from Enrolments;

How the query executor deals with the database ...

DB db = openDatabase("myDB");
Reln r = openRel(db,"Enrolments");
Scan s = startScan(r);
Tuple t; Results res = NULL;
while ((t = nextTuple(s)) != NULL)
{
 int stuid = getField(t,"student");
 char *course = getField(t,"course");
 res = addTuple(res, mkTuple(stuid,course));

7/03/2016, 9:44 PMWeek 02 Lecture

Page 2 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

}

... Storage Management 5/58

Views of Data 6/58

Users and top-level query evaluator see data as

a collection of tables, each with a schema (tuple-type)
where each table contains a set (sequence) of tuples

... Views of Data 7/58

Relational operators and access methods see data as

sequence of fixed-size pages, typically 1KB to 8KB
where each page contains tuple data or index data

7/03/2016, 9:44 PMWeek 02 Lecture

Page 3 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

... Views of Data 8/58

File manager sees both DB objects and file store

maps (tableName, pageIndex) to (file, offset)

Storage Management Topics 9/58

Topics to be considered:

DB Object Management (Catalog)
how tables/functions/types, etc. are represented

Disks and Files
performance issues and organisation of disk files

Buffer Management
using caching to improve DBMS system throughput

Tuple/Page Management
how tuples are represented within disk pages

Each topic illustrated by its PostgreSQL implementation.

Storage Manager Interface 10/58

The storage manager provides higher levels of system

with an abstraction based on relations/pages/tuples

7/03/2016, 9:44 PMWeek 02 Lecture

Page 4 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

which maps down to files/blocks/records (via buffers)

Example: simple scan of a relation:

select student,course from Enrolments

High-level view of result: sequence of tuples.

How is this mapped to accesses to files/blocks/records?

... Storage Manager Interface 11/58

Implementation at level of query executor: (not PostgreSQL)

DB db = openDatabase("myDB");
Reln r = openRelation(db,"Enrolments");
Scan s = startScan(r);
Tuple t; Results res = NULL;
while ((t = nextTuple(s)) != NULL)
{
 int stuid = getField(t,"student");
 char *course = getField(t,"course");
 res = addTuple(res, mkTuple(stuid,course));
}

... Storage Manager Interface 12/58

The storage manager provides mechanisms for:

representing database objects during query execution
DB (handle on an authorised/opened database)
Reln (handle on an opened relation)
Page (memory buffer to hold contents of data block)
Tuple (memory holding data values from one tuple)

referring to database objects (addresses)
symbolic (e.g. database/schema/table/field names)
abstract physical (e.g. PageId, TupleId)

... Storage Manager Interface 13/58

Examples of references (addresses) used in DBMSs:

PageID ... identifies (locates) a block of data
typically, PageID = FileID + Offset
where Offset gives location of block within file

TupleID ... identifies (locates) a single tuple
typically, TupleID = PageID + Offset
where Offset gives location of tuple within page

Note that Offsets may be indexes into mapping tables giving real address.

... Storage Manager Interface 14/58

Possible implementation for DB object ...

typedef struct Database {

7/03/2016, 9:44 PMWeek 02 Lecture

Page 5 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

 char *name; // database name
 Catalog cat; // meta-data
 ...
} *DB;

Possible implementation of Reln object ...

typedef struct Relation {
 char *name; // table name
 File file; // fd for table file
 ...
} *Reln;

... Storage Manager Interface 15/58

Possible implementation for Scan object ...

query executor wants to see result tuple-at-a-time
DBMS read blocks from files (page-of-tuples-at-a-time)

typedef struct ScanData {
 File file; // file holding table data
 Page page; // most recently read data
 int pageno; // current block within file
 int tupno; // current tuple within page
 ...
} *Scan;

... Storage Manager Interface 16/58

startScan() might be implemented as:

Scan startScan(Reln r) {
 Scan s = MemAlloc(struct ScanData);
 s->file = r->file;
 s->page = null;
 s->pageno = 0;
 s->tupno = 0;
 return s;
}

... Storage Manager Interface 17/58

And nextTuple() might be implemented as:

Tuple nextTuple(Scan s) {
 if (noMoreTuplesIn(s->page,s->tupno))
 if (noMorePagesIn(s->file))
 return NULL;
 s->page = getPage(s->file,s->pageno);
 s->pageno++;
 s->tupno = 0;
 }
 Tuple t = getTuple(s->page,s->tupno);
 s->tupno++;
 return t;
}

7/03/2016, 9:44 PMWeek 02 Lecture

Page 6 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

From Symbolic to Internal 18/58

How do we determine ...

information about a database, given its name
information about a table, given its name

DBMSs use catalog data in special tables

E.g. for PostgreSQL

pg_database(oid, datname, datdba, datacl[], ...)
pg_namespace(oid, nspname, nspowner, nspacl[], ...)
pg_class(oid, relname, relnamespace, ..., relkind,
 reltuples, relnatts, relhaspkey, relacl[] ...)
pg_attribute(oid, attrelid, attname, atttypid, attnum, ...)
pg_type(oid, typname, typnamespace, typowner, typlen, ...)

Exercise 1: Table Statistics 19/58

Using the PostgreSQL catalog, write a view

create view pop("table",ntuples) as ...
to return name of table and estimated #tuples
for all tables in the public schema

It should behave as follows:

db=# select * from pop;
 table | ntuples
----------+---------
 table1 | 162
 table2 | 2788
 table3 | 1500
...

Exercise 2: Extracting a Schema 20/58

Write a PLpgSQL function:

function schema() returns setof text
giving a list of table schemas in the public schema

It should behave as follows:

db=# select * from schema();
 tables

 table1(x, y, z)
 table2(a, b)
 table3(id, name, address)
...

Exercise 3: More accurate tuple counts 21/58

The earlier example:

7/03/2016, 9:44 PMWeek 02 Lecture

Page 7 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

create view pop("table",ntuples) as ...

gives estimated tuple counts which may not be accurate.

Write a PLpgSQL function that returns accurate counts:

create type TableInfo as (table text, ntuples int);
create function pop2() returns setof TableInfo ...

Hint: you will need to use dynamically-generated queries.

Storage Manager

DBMS Storage Manager 23/58

Levels of DBMS related to storage management:

Storage Technology 24/58

HDD (hard disk drive)

large (10TB), cheap $/B, high power consumption
R/W: slow (ms), latency, block xfer
reliability via redundancy (RAID)

SSD (solid state drive)

medium (500GB), moderate $/B, low power consumption
R: fast (µs), byte/page xfer; W: mod (100µs), block erase
reliability: limited block erasures

RAM (random access memory)

small (10GB), high $/B, low power consumption, volatile
R/W: fast (ns), byte xfer

... Storage Technology 25/58

7/03/2016, 9:44 PMWeek 02 Lecture

Page 8 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

Persistent storage is

large, cheap, relatively slow, accessed in blocks
used for long-term storage of data

Computational storage is

small, expensive, fast, accessed by byte/word
used for all analysis of data

Access cost HDD:RAM ≅ 100000:1, e.g.

100ms to read block containing two tuples
1µs to compare fields in two tuples

Disk Management 26/58

Aim of disk management subsystem:

handles mapping from database ID to disk address
transfer blocks of data between buffer pool and disk
also attempts to handle disk access error problems (retry)

Note: DBMSs typically do not deal with the raw disk

mapping from PageId to disk is via filesystem

File Management 27/58

Aims of file management subsystem:

organise layout of data within the filesystem
handles mapping from database ID to file address
transfer blocks of data between buffer pool and filesystem
also attempts to handle file access error problems (retry)

Essentially the same as those for disk management.

Build higher-level operations on top of OS file operations.

... File Management 28/58

Typical file operations provided by the operating system:

fd = open(fileName,mode)
 // open a named file for reading/writing/appending
close(fd)
 // close an open file, via its descriptor
nread = read(fd, buf, nbytes)
 // attempt to read data from file into buffer
nwritten = write(fd, buf, nbytes)
 // attempt to write data from buffer to file
lseek(fd, offset, seek_type)
 // move file pointer to relative/absolute file offset
fsync(fd)
 // flush contents of file buffers to disk

7/03/2016, 9:44 PMWeek 02 Lecture

Page 9 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

DBMS File Organisation 29/58

How is data for DB objects arranged in the file system?

Different DBMSs make different choices, e.g.

by-pass the file system and use a raw disk partition
have a single very large file containing all DB data
have several large files, with tables spread across them
have multiple data files, one for each table
have multiple files for each table
etc.

Single-file DBMS 30/58

Consider a single file for the entire database (e.g. SQLite)

Objects are allocated to regions (segments) of the file.

If an object grows too large for allocated segment, allocate an extension.

What happens to allocated space when objects are removed?

... Single-file DBMS 31/58

Allocating space in Unix files is easy:

simply seek to the place you want and write the data
if nothing there already, data is appended to the file
if something there already, it gets overwritten

If the seek goes way beyond the end of the file:

Unix does not (yet) allocate disk space for the "hole"
allocates disk storage only when data is written there

With the above, a disk/file manager is easy to implement.

Single-file Disk Manager 32/58

Simple disk manager for a single-file database:

// Disk Manager data/functions
#define PAGESIZE 2048 // bytes per page
typedef int PageId; // PageId is block index

typedef struct DBdescriptor {
 char *dbname; // copy of database name
 int fd; // the database file

7/03/2016, 9:44 PMWeek 02 Lecture

Page 10 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

 SpaceTable map; // map of free/used areas
 NameTable names; // map names to areas + sizes
 ...
} *DB;

typedef struct RelDescriptor {
 char *relname; // copy of table name
 int start; // page index of start of table data
 int npages; // number of pages of table data
 ...
} *Reln;

... Single-file Disk Manager 33/58

// start using DB
DB openDatabase(char *name) {
 DB db = new(DBdescriptor);
 db->dbname = strdup(name);
 db->fd = open(name,O_RDWR);
 db->map = readSpaceTable(db);
 db->names = readNameTable(db);
 return db;
}
// stop using DB and update all meta-data
void closeDatabase(DB db) {
 writeSpaceTable(db,db->map);
 writeNameTable(db,db->names);
 fsync(db->fd); // ensure that changes reach disk
 close(db->fd);
 free(db);
}

... Single-file Disk Manager 34/58

// set up struct describing relation
Reln openRelation(DB db, char *rname) {
 Reln r = new(RelDescriptor);
 r->relname = strdup(rname);
 // get relation data from map tables
 r->start = ...;
 r->npages = ...;
 return r;
}
// stop using a relation
void closeRelation(Reln r) {
 free(r);
}
#define nPages(r) (r->npages)
#define makePageId(r,i) (r->first + i)

... Single-file Disk Manager 35/58

// assume that Page = buffer of PageSize bytes
// assume that PageId = block number in file

// read page from file into memory buffer
void get_page(DB db, PageId p, Page buf) {

7/03/2016, 9:44 PMWeek 02 Lecture

Page 11 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

 lseek(db->fd, pageOffset(p), SEEK_SET);
 read(db->fd, buf, PAGESIZE);
}

// write page from memory buffer to file
void put_page(Db db, PageId p, Page buf) {
 lseek(db->fd, pageOffset(p), SEEK_SET);
 write(db->fd, buf, PAGESIZE);
}

... Single-file Disk Manager 36/58

The pageOffset() function uses the DB map

takes a PageId value
uses the DB space map
returns an absolute file offset

E.g. each table is allocated large contiguous segment of file

get start address of relation(PageId) from map
add pageNumber(PageId)*PAGESIZE to give offset

... Single-file Disk Manager 37/58

// managing contents of mapping table is complex
// assume a list of (offset,length,status) tuples

// allocate n new pages at end of file
PageId allocate_pages(int n) {
 int endfile = lseek(db->fd, 0, SEEK_END);
 addNewEntry(db->map, endfile, n);
 // note that file itself is not changed
}
// drop n pages starting from p
void deallocate_pages(PageId p, int n) {
 markUnused(db->map, p, n);
 // note that file itself is not changed
}

Example: Scanning a Relation 38/58

With the above disk manager, the query:

select name from Employee

might be implemented as something like

DB db = openDatabase("myDB");
Reln r = openRelation(db,"Employee");
Page buffer = malloc(PAGESIZE*sizeof(char));
for (int i = 0; i < nPages(r); i++) {
 PageId pid = makePageId(r,i);
 get_page(db, pid, buffer);
 foreach tuple in buffer {
 get tuple data and extract name
 }
}

7/03/2016, 9:44 PMWeek 02 Lecture

Page 12 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

Exercise 4: Relation Scan Cost 39/58

Consider a table R with 105 tuples, implemented as

number of records/tuples r = 100,000
average size of records R = 200 bytes
size of data pages B = 4096 bytes
time to read one data page Tr = 10msec
time to check one tuple 1 usec
time to form one result tuple 1 usec
overhead from scanning one page 40 usec

Calculate the total time-cost for answering the query:

select * from R where x > 10;

if 50% of the tuples satisfy the condition.

PostgreSQL Storage Manager 40/58

PostgreSQL uses the following file organisation ...

... PostgreSQL Storage Manager 41/58

Components of storage subsystem:

mapping from relations to files (RelFileNode)
abstraction for open relation pool (storage/smgr)
functions for managing files (storage/smgr/md.c)
file-descriptor pool (storage/file)

PostgreSQL has two basic kinds of files:

heap files containing data (tuples)
index files containing index entries

Note: smgr designed for many storage devices; only mag disk handler used

7/03/2016, 9:44 PMWeek 02 Lecture

Page 13 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

Relations as Files 42/58

PostgreSQL identifies relation files via their OIDs.

The core data structure for this is RelFileNode:

typedef struct RelFileNode {
 Oid spcNode; // tablespace
 Oid dbNode; // database
 Oid relNode; // relation
} RelFileNode;

Global (shared) tables (e.g. pg_database) have

 spcNode == GLOBALTABLESPACE_OID
 dbNode == 0

... Relations as Files 43/58

The relpath function maps RelFileNode to file:

char *relpath(RelFileNode r) // simplified
{
 char *path = malloc(ENOUGH_SPACE);

 if (r.spcNode == GLOBALTABLESPACE_OID) {
 /* Shared system relations live in PGDATA/global */
 Assert(r.dbNode == 0);
 sprintf(path, "%s/global/%u",
 DataDir, r.relNode);
 }
 else if (r.spcNode == DEFAULTTABLESPACE_OID) {
 /* The default tablespace is PGDATA/base */
 sprintf(path, "%s/base/%u/%u",
 DataDir, r.dbNode, r.relNode);
 }
 else {
 /* All other tablespaces accessed via symlinks */
 sprintf(path, "%s/pg_tblspc/%u/%u/%u", DataDir
 r.spcNode, r.dbNode, r.relNode);
 }
 return path;
}

Exercise 5: PostgreSQL Files 44/58

In my PostgreSQL server

examine the content of the $PGDATA directory
find the directory containing the pizza database
find the file in this directory for the People table
examine the contents of the People file
what are the other files in the directory?
are there forks in any of my databases?

File Descriptor Pool 45/58

Unix has limits on the number of concurrently open files.

7/03/2016, 9:44 PMWeek 02 Lecture

Page 14 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

PostgreSQL maintains a pool of open file descriptors:

to hide this limitation from higher level functions
to minimise expensive open() operations

File names are simply strings: typedef char *FileName

Open files are referenced via: typedef int File

A File is an index into a table of "virtual file descriptors".

... File Descriptor Pool 46/58

Interface to file descriptor (pool):

File FileNameOpenFile(FileName fileName,
 int fileFlags, int fileMode);
 // open a file in the database directory ($PGDATA/base/...)
File OpenTemporaryFile(bool interXact);
 // open temp file; flag: close at end of transaction?
void FileClose(File file);
void FileUnlink(File file);
int FileRead(File file, char *buffer, int amount);
int FileWrite(File file, char *buffer, int amount);
int FileSync(File file);
long FileSeek(File file, long offset, int whence);
int FileTruncate(File file, long offset);

Analogous to Unix syscalls open(), close(), read(), write(), lseek(), ...

... File Descriptor Pool 47/58

Virtual file descriptors (Vfd)

physically stored in dynamically-allocated array

also arranged into list by recency-of-use

VfdCache[0] holds list head/tail pointers.

... File Descriptor Pool 48/58

Virtual file descriptor records (simplified):

typedef struct vfd
{
 s_short fd; // current FD, or VFD_CLOSED if none

7/03/2016, 9:44 PMWeek 02 Lecture

Page 15 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

 u_short fdstate; // bitflags for VFD's state
 File nextFree; // link to next free VFD, if in freelist
 File lruMoreRecently; // doubly linked recency-of-use list
 File lruLessRecently;
 long seekPos; // current logical file position
 char *fileName; // name of file, or NULL for unused VFD
 // NB: fileName is malloc'd, and must be free'd when closing the VFD
 int fileFlags; // open(2) flags for (re)opening the file
 int fileMode; // mode to pass to open(2)
} Vfd;

File Manager 49/58

The "magnetic disk storage manager"

manages its own pool of open file descriptors
each one represents an open relation file (Vfd)
may use several Vfd's to access data, if file > 2GB
manages mapping from PageId to file+offset.

PostgreSQL PageId values are structured:

typedef struct
{
 RelFileNode rnode; // which relation/file
 ForkNumber forkNum; // which fork (of reln)
 BlockNumber blockNum; // which page/block
} BufferTag;

... File Manager 50/58

Access to a block of data proceeds as follows:

offset = BlockNumber * BLCKSZ
fileID = RelFileNode+ForkNumber
if (fileID is already in Vfd pool) {
 if (offset is in this file)
 fd = use Vfd from pool
 else
 fd = allocate new Vfd for next part of file
} else {
 fd = allocate new Vfd for this file
}
seek to offset in fd
read/write data page (BLCKSZ bytes)

BLCKSZ is a global configurable constant (default: 8192).

Buffer Pool

Buffer Pool 52/58

Aim of DBMS buffer pool:

reduce number of disk reads and disk writes

7/03/2016, 9:44 PMWeek 02 Lecture

Page 16 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

Assumption:

some pages are accessed many times during query evaln

Achieves read/write reduction by:

holding many pages in memory for re-use
only removing them when "absolutely necessary"
sharing pages among multiple transactions (global pool)

... Buffer Pool 53/58

Buffer pool lies between access methods and disk manager

... Buffer Pool 54/58

Access methods manipulate pages filled with tuples

could be achieved via get/put_page() operations

Interface becomes request/release rather than get/put

many relational ops work as
get, process, [write], get, process, [write], get, process, ...

with a buffer pool, relational ops become
request, process, release, request, process, release, ...
where only some of the requests result in read
where only some of the releases result in write

... Buffer Pool 55/58

Buffer pool data structures:

a fixed-size, memory-resident collection of frames (page-slots)
a directory containing information about the status of each frame

For each frame, we need to know:

contents = PageId (dbid,relid,page#) or Empty flag (tag)
whether it has been modified since loading (dirty bit)

7/03/2016, 9:44 PMWeek 02 Lecture

Page 17 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

how many transactions are currently using it (pin count)
time-stamp for most recent access (assists with replacement)
pointer to next free frame (free list)

... Buffer Pool 56/58

... Buffer Pool 57/58

Basic buffer pool interface

Page request_page(PageId pid);

get disk block corresponding to page pid into buffer pool

void release_page(PageId pid);

indicate that page pid is no longer in use (advisory)

void mark_page(PageId pid);

indicate that page pid has been modified (advisory)

void flush_page(PageId pid);

write contents of page pid from buffer pool onto disk

void hold_page(PageId pid);

recommend that page pid should not be swapped out

Exercise 6: Buffer Pool Functions 58/58

Assuming a Frame data structure like

typedef struct FrameData *FrameData;
struct FrameData {
 PageId tag; // contents
 Page page; // buffer containing data
 int dirty; // modified flag

7/03/2016, 9:44 PMWeek 02 Lecture

Page 18 of 18file:///Users/jas/Dropbox/cs9315/16s1/lectures/week02/notes.html

 int pin; // pin count
 time_t mra; // most recent access
 FrameData *next; // free list
};

Give implementations for request_page(), release_page(), replace_frame()

Produced: 7 Mar 2016

