
14/03/2016, 8:36 PMWeek 03 Lecture

Page 1 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

Week 03 Lecture

DBMS Parameters 1/71

Our view of relations in DBMSs:

a relation is a set of r tuples, with average size R bytes
the tuples are stored in b data pages on disk
each page has size B bytes and contains up to c tuples
data is transferred disk↔memory in whole pages
cost of disk↔memory transfer Tr , Tw dominates other costs

... DBMS Parameters 2/71

Typical DBMS/table parameter values:

Quantity Symbol E.g. Value

total # tuples r 106

record size R 128 bytes

total # pages b 105

page size B 8192 bytes

tuples per page c 60

page read/write time Tr ,Tw 10 msec

cost to process
one page in memory

- ≅ 0

Buffer Pool

Buffer Pool 4/71

Buffer operations: (all take single PageId argument)

request_page(pid), release_page(pid), ...

Buffer pool data structures:

Page frames[NBUFS]; FrameData directory[NBUFS];
Page is byte[BUFSIZE], FrameData is struct {...}

For each frame, we need to know: (FrameData)

14/03/2016, 8:36 PMWeek 03 Lecture

Page 2 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

which Page (i.e. PageId = (RelId,PageNum)) it contains, or empty/free
whether it has been modified since loading (dirty bit)
how many transactions are currently using it (pin count)
time-stamp for most recent access (assists with replacement)

... Buffer Pool 5/71

Page Replacement Policies 6/71

Several schemes are commonly in use:

Least Recently Used (LRU)
Most Recently Used (MRU)
First in First Out (FIFO)
Random

LRU / MRU require knowledge of when pages were last accessed

how to keep track of "last access" time?
base on request/release ops or on real page usage?

... Page Replacement Policies 7/71

Cost benefit from buffer pool (with n frames) is determined by:

number of available frames (more ⇒ better)
replacement strategy vs page access pattern

Example (a): sequential scan, LRU or MRU, n ≥ b

First scan costs b reads; subsequent scans are "free".

Example (b): sequential scan, MRU, n < b

First scan costs b reads; subsequent scans cost b - n reads.

Example (c): sequential scan, LRU, n < b

All scans cost b reads; known as sequential flooding.

14/03/2016, 8:36 PMWeek 03 Lecture

Page 3 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

Effect of Buffer Management 8/71

Consider a query to find customers who are also employees:

select c.name
from Customer c, Employee e
where c.ssn = e.ssn;

This might be implemented inside the DBMS via nested loops:

for each tuple t1 in Customer {
 for each tuple t2 in Employee {
 if (t1.ssn == t2.ssn)
 append (t1.name) to result set
 }
}

... Effect of Buffer Management 9/71

In terms of page-level operations, the algorithm looks like:

Rel rC = openRelation("Customer");
Rel rE = openRelation("Employee");
for (int i = 0; i < nPages(rC); i++) {
 PageId pid1 = makePageId(db,rC,i);
 Page p1 = request_page(pid1);
 for (int j = 0; j < nPages(rE); j++) {
 PageId pid2 = makePageId(db,rE,j);
 Page p2 = request_page(pid2);
 // compare all pairs of tuples from p1,p2
 // construct solution set from matching pairs
 release_page(pid2);
 }
 release_page(pid1);
}

Exercise 1: Buffer Management Cost Benefit (i) 10/71

Assume that:

the Customer relation has bC pages (e.g. 5)
the Employee relation has bE pages (e.g. 4)

Compute how many page reads occur ...

if we have only 2 buffers (i.e. effectively no buffer pool)
when a buffer pool with MRU replacement strategy is used
when a buffer pool with LRU replacement strategy is used

For the last two, buffer pool has n=3 slots (n < bC and n < bE)

Exercise 2: Buffer Management Cost Benefit (ii) 11/71

If the tables were larger, the above analysis would be tedious.

14/03/2016, 8:36 PMWeek 03 Lecture

Page 4 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

Write a C program to simulate buffer pool usage

assuming a nested loop join as above
argv[1] gives number of pages in "outer" table
argv[2] gives number of pages in "inner" table
argv[3] gives number of slots in buffer pool
argv[4] gives replacement strategy (LRU,MRU,FIFO-Q)

PostgreSQL Buffer Manager 12/71

PostgreSQL buffer manager:

provides a shared pool of memory buffers for all backends
all access methods get data from disk via buffer manager

Buffers are located in a large region of shared memory.

Definitions: src/include/storage/buf*.h

Functions: src/backend/storage/buffer/*.c

Buffer code is also used by backends who want a private buffer pool

... PostgreSQL Buffer Manager 13/71

Buffer pool consists of:

BufferDescriptors

shared fixed array (size NBuffers) of BufferDesc

BufferBlocks

shared fixed array (size NBuffers) of Buffer

Buffer = index values in above arrays

indexes: global buffers 1..NBuffers; local buffers negative

Size of buffer pool is set in postgresql.conf, e.g.

shared_buffers = 16MB # min 128KB, 16*8KB buffers

... PostgreSQL Buffer Manager 14/71

14/03/2016, 8:36 PMWeek 03 Lecture

Page 5 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

... PostgreSQL Buffer Manager 15/71

include/storage/buf.h

basic buffer manager data types (e.g. Buffer)

include/storage/bufmgr.h

definitions for buffer manager function interface
(i.e. functions that other parts of the system call to use buffer manager)

include/storage/buf_internals.h

definitions for buffer manager internals (e.g. BufferDesc)

Code: backend/storage/buffer/*.c

Commentary: backend/storage/buffer/README

Buffer Pool Data Types 16/71

typedef struct buftag {
 RelFileNode rnode; /* physical relation identifier */
 ForkNumber forkNum;
 BlockNumber blockNum; /* relative to start of reln */
} BufferTag;

BufFlags: BM_DIRTY, BM_VALID, BM_TAG_VALID, BM_IO_IN_PROGRESS, ...
typedef struct sbufdesc { (simplified)
 BufferTag tag; /* ID of page contained in buffer */
 BufFlags flags; /* see bit definitions above */
 uint16 usage_count; /* usage counter for clock sweep */
 unsigned refcount; /* # of backends holding pins */
 int buf_id; /* buffer's index number (from 0) */
 int freeNext; /* link in freelist chain */
 ...
} BufferDesc;

Buffer Pool Functions 17/71

Buffer manager interface:

14/03/2016, 8:36 PMWeek 03 Lecture

Page 6 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

Buffer ReadBuffer(Relation r, BlockNumber n)

ensures nth page of file for relation r is loaded
(may need to remove an existing unpinned page and read data from file)
increments reference (pin) count and usage count for buffer
returns index of loaded page in buffer pool (Buffer value)
assumes main fork, so no ForkNumber required

Actually a special case of ReadBuffer_Common, which also handles variations like different replacement strategy, forks, temp buffers, ...

... Buffer Pool Functions 18/71

Buffer manager interface (cont):

void ReleaseBuffer(Buffer buf)

decrement pin count on buffer
if pin count falls to zero,
ensures all activity on buffer is completed before returning

void MarkBufferDirty(Buffer buf)

marks a buffer as modified
requires that buffer is pinned and locked
actual write is done later (e.g. when buffer replaced)

... Buffer Pool Functions 19/71

Additional buffer manager functions:

Page BufferGetPage(Buffer buf)

finds actual data associated with buffer in pool
returns reference to memory where data is located

BufferIsPinned(Buffer buf)

check whether this backend holds a pin on buffer

CheckPointBuffers

write data in checkpoint logs (for recovery)
flush all dirty blocks in buffer pool to disk

etc. etc. etc.

... Buffer Pool Functions 20/71

Important internal buffer manager function:

BufferDesc *BufferAlloc(
 Relation r, ForkNumber f,
 BlockNumber n, bool *found)

used by ReadBuffer to find a buffer for (r,f,n)
if (r,f,n) already in pool, pin it and return descriptor
if no available buffers, select buffer to be replaced
returned descriptor is pinned and marked as holding (r,f,n)
does not read; ReadBuffer has to do the actual I/O

14/03/2016, 8:36 PMWeek 03 Lecture

Page 7 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

Clock-sweep Replacement Strategy 21/71

PostgreSQL page replacement strategy: clock-sweep

treat buffer pool as circular list of buffer slots
NextVictimBuffer holds index of next possible evictee
if page is pinned or "popular", leave it

usage_count implements "popularity/recency" measure
incremented on each access to buffer (up to small limit)
decremented each time considered for eviction

increment NextVictimBuffer and try again (wrap at end)

For specialised kinds of access (e.g. sequential scan), can allocate a private "buffer ring" with different replacement strategy.

Exercise: PostgreSQL Buffer Pool 22/71

Consider an initally empty buffer pool with only 3 slots.

Show the state of the pool after each of the following:

Req R0, Req S0, Rel S0, Req S1, Rel S1, Req S2,
Rel S2, Rel R0, Req R1, Req S0, Rel S0, Req S1,
Rel S1, Req S2, Rel S2, Rel R1, Req R2, Req S0,
Rel S0, Req S1, Rel S1, Req S2, Rel S2, Rel R2

Treat BufferDesc entries as

(tag, usage_count, refcount, freeNext)

Assume freeList and nextVictim global variables.

Pages

Page/Tuple Management 24/71

Pages 25/71

Database applications view data as:

14/03/2016, 8:36 PMWeek 03 Lecture

Page 8 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

a collection of records (tuples)
records can be accessed via a TupleId (aka RecordId or RID)
TupleId = (RelId + PageNum + TupIndex)

The disk and buffer manager provide the following view:

data is a sequence of fixed-size pages (aka "blocks")
pages can be (random) accessed via a PageId
each page contains zero or more tuple values

Page format = how space/tuples are organised within a Page.

Page Formats 26/71

Ultimately, a Page is simply an array of bytes (byte[]).

We want to interpret/manipulate it as a collection of Records.

Typical operations on Pages:

request_page(pid) ... get page via its PageId
get_record(rid) ... get record via its TupleId
rid = insert_record(pid,rec) ... add new record into page
update_record(rid,rec) ... update value of specified record
delete_record(rid) ... remove a specified record from a page

Note: rid typically contains (PageId,TupIndex), so no explicit pid needed

... Page Formats 27/71

Factors affecting Page formats:

determined by record size flexibility (fixed, variable)
how free space within Page is managed
whether some data is stored outside Page

does Page have an associated overflow chain?
are large data values stored elsewhere? (e.g. TOAST)
can one tuple span multiple Pages?

Implementation of Page operations critically depends on format.

... Page Formats 28/71

For fixed-length records, use record slots.

insert: place new record in first available slot
delete: two possibilities for handling free record slots:

14/03/2016, 8:36 PMWeek 03 Lecture

Page 9 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

Exercise: Fixed-length Records 29/71

Give examples of table definitions

which result in fixed-length records
which result in variable-length records

create table R (...);

What are the common features of each type of table?

Page Formats 30/71

For variable-length records, must use slot directory.

Possibilities for handling free-space within block:

compacted (one region of free space)
fragmented (distributed free space)

In practice, a combination is useful:

normally fragmented (cheap to maintain)
compacted when needed (e.g. record won't fit)

... Page Formats 31/71

Compacted free space:

14/03/2016, 8:36 PMWeek 03 Lecture

Page 10 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

Note: "pointers" are implemented as word offsets within block.

... Page Formats 32/71

Fragmented free space:

Example: Inserting Records 33/71

For both of the following page formats

1. variable-length records, with compacted free space
2. variable-length records, with fragmented free space

implement the insert() function.

Use the page format on the following slides, but also assume:

page size is 1024 bytes
tuples start on 4-byte boundaries
references into page are all 8-bits (1 byte) long
a function recSize(r) gives size in bytes

... Example: Inserting Records 34/71

Initial page state (compacted free space) ...

14/03/2016, 8:36 PMWeek 03 Lecture

Page 11 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

... Example: Inserting Records 35/71

Before inserting record 7 (compacted free space) ...

... Example: Inserting Records 36/71

After inserting record 7 (80 bytes) ...

... Example: Inserting Records 37/71

14/03/2016, 8:36 PMWeek 03 Lecture

Page 12 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

Initial page state (fragmented free space) ...

... Example: Inserting Records 38/71

Before inserting record 7 (fragmented free space) ...

... Example: Inserting Records 39/71

After inserting record 7 (80 bytes) ...

14/03/2016, 8:36 PMWeek 03 Lecture

Page 13 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

Storage Utilisation 40/71

How many records can fit in a page? (denoted C = capacity)

Depends on:

page size ... typical values: 1KB, 2KB, 4KB, 8KB
record size ... typical values: 64B, 200B, app-dependent
page header data ... typically: 4B - 32B
slot directory ... depends on how many records

We typically consider average record size (R)

Given C, HeaderSize + C*SlotSize + C*R ≤ PageSize

Exercise 3: Space Utilisation 41/71

Consider the following page/record information:

page size = 1KB = 1024 bytes = 210 bytes
records: (a:int,b:varchar(20),c:char(10),d:int)
records are all aligned on 4-byte boundaries
c field padded to ensure d starts on 4-byte boundary
each records has 4 field-offsets at start of record (each 1 byte)
char(10) field rounded up to 12-bytes to preserve alignment
maximum size of b values = 20 bytes; average size = 16 bytes
page has 32-bytes of header information, starting at byte 0
only insertions, no deletions or updates

Calculate C = average number of records per page.

Overflows 42/71

Sometimes, it may not be possible to insert a record into a page:

1. no free-space fragment large enough
2. overall free-space is not large enough
3. the record is larger than the page
4. no more free directory slots in page

For case (1), can first try to compact free-space within the page.

If still insufficient space, we need an alternative solution ...

... Overflows 43/71

File organisation determines how cases (2)..(4) are handled.

If records may be inserted anywhere that there is free space

cases (2) and (4) can be handled by making a new page
case (3) requires either spanned records or "overflow file"

If file organisation determines record placement (e.g. hashed file)

cases (2) and (4) require an "overflow page"
case (3) requires an "overflow file"

14/03/2016, 8:36 PMWeek 03 Lecture

Page 14 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

With overflow pages, rid structure may need modifying (rel,page,ovfl,rec)

... Overflows 44/71

Overflow files for very large records and BLOBs:

Record-based handling of overflows:

We discuss overflow pages in more detail when covering Hash Files.

PostgreSQL Page Representation 45/71

Functions: src/backend/storage/page/*.c

Definitions: src/include/storage/bufpage.h

Each page is 8KB (default BLCKSZ) and contains:

header (free space pointers, flags, xact data)
array of (offset,length) pairs for tuples in page
free space region (between array and tuple data)
actual tuples themselves (inserted from end towards start)
(optionally) region for special data (e.g. index data)

Large data items are stored in separate (TOAST) files (implicit)

Also supports ~SQL-standard BLOBs (explicit large data items)

... PostgreSQL Page Representation 46/71

PostgreSQL page layout:

14/03/2016, 8:36 PMWeek 03 Lecture

Page 15 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

... PostgreSQL Page Representation 47/71

Page-related data types:

// a Page is simply a pointer to start of buffer
typedef Pointer Page;

// indexes into the tuple directory
typedef uint16 LocationIndex;

// entries in tuple directory (line pointer array)
typedef struct ItemIdData
{
 unsigned lp_off:15, // tuple offset from start of page
 lp_flags:2, // unused,normal,redirect,dead
 lp_len:15; // length of tuple (bytes)
} ItemIdData;

... PostgreSQL Page Representation 48/71

Page-related data types: (cont)

typedef struct PageHeaderData
{
 XLogRecPtr pd_lsn; // xact log record for last change
 uint16 pd_tli; // xact log reference information
 uint16 pd_flags; // flag bits (e.g. free, full, ...
 LocationIndex pd_lower; // offset to start of free space
 LocationIndex pd_upper; // offset to end of free space
 LocationIndex pd_special; // offset to start of special space
 uint16 pd_pagesize_version;
 TransactionId pd_prune_xid;// is pruning useful in data page?
 ItemIdData pd_linp[1]; // beginning of line pointer array
} PageHeaderData;

typedef PageHeaderData *PageHeader;

... PostgreSQL Page Representation 49/71

Operations on Pages:

void PageInit(Page page, Size pageSize, ...)

initialize a Page buffer to empty page

14/03/2016, 8:36 PMWeek 03 Lecture

Page 16 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

in particular, sets pd_lower and pd_upper

OffsetNumber PageAddItem(Page page,
 Item item, Size size, ...)

insert one tuple (or index entry) into a Page
fails if: not enough free space, too many tuples

void PageRepairFragmentation(Page page)

compact tuple storage to give one large free space region

... PostgreSQL Page Representation 50/71

PostgreSQL has two kinds of pages:

heap pages which contain tuples
index pages which contain index entries

Both kinds of page have the same page layout.

One important difference:

index entries tend be a smaller than tuples
can typically fit more index entries per page

Exercise: PostgreSQL Pages 51/71

Draw diagrams of a PostgreSQL heap page

when it is initially empty
after three tuples have been inserted
 with lengths of 60, 80, and 70 bytes
after the 80 byte tuple is deleted (but before vacuuming)
after a new 50 byte tuple is added

Show the values in the tuple header.

Assume that there is no special space in the page.

Tuples

Records vs Tuples 53/71

A table is defined by a collection of attributes (schema), e.g.

create table Employee (
 id# integer primary key,
 name varchar(20), -- or char(20)
 job varchar(10), -- or char(10)
 dept number(4)
);

Tuple = collection of attribute values for such a schema, e.g.

 (33357462, 'Neil Young', 'Musician', 0277)

14/03/2016, 8:36 PMWeek 03 Lecture

Page 17 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

Record = sequence of bytes, containing data for one tuple.

Operations on Records 54/71

Simplest operation to access a record via its RID:

Record get_record(RecordId rid) {
 Page buf = request_page(relId(rid), pageNum(rid));
 return get_record_from_page(buf, recNum(rid));
}

where TupleId = RecordId = (RelId, PageNum, TupIndex)

Gives a sequence of bytes, which needs to be "tuple-fied", e.g.

Record r = get_record(rid)
Tuple t = makeTuple(rel,rec)

Requires knowledge of relation schema (rel)

... Operations on Records 55/71

Other operations on records (via their RID) ...

update_record(rid,rec)

modifies a record "in place" (replaced by new rec)

rid = insert_record(pid,rec)

insert record into specified page, returning RID of new record

delete_record(rid)

remove record (mark as deleted)

All of the above, first require a page fetch (via buffer pool)

Operations on Tuples 56/71

Tuple t = makeTuple(rel,rec)

convert record to tuple data structure (may be identity mapping)

Typ getTypField(Tuple t, int fno)

extract the fno'th field from a Tuple as a value of type Typ

E.g. getIntField(t,1), getStrField(t,2)

void setTypField(Tuple t, int fno, Typ val)

set the value of the fno'th field of a Tuple to val

E.g. setIntField(t,1,42), setStrField(t,2,"abc")

Operations for Access Methods 57/71

14/03/2016, 8:36 PMWeek 03 Lecture

Page 18 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

Tuple get_tuple(RecordId rid)

fetch the tuple specified by rid; return reference to Tuple

Tuple get_tuple_from_page(Page p, int recNum)

get the recNum'th tuple from an already-buffered page

Access methods typially involve iterators, e.g.

Tuple next_tuple(Scan s)

return Tuple immediately following last accessed one
returns NULL if no more Tuples left in the relation
Scan holds data on progress through file (e.g. current page)
Scan may include condition to implement WHERE-clause

Example Query 58/71

Example: simple scan of a table ...

select name from Employee

implemented as:

DB db = openDatabase("myDB");
Rel r = openRel(db,"Employee");
Scan s = start_scan(r);
Tuple t;
while ((t = next_tuple(s)) != NULL)
{
 char *name = getStrField(t,2);
 printf("%s\n", name);
}

Fixed-length Records 59/71

Encoding scheme for fixed-length records:

record format (length + offsets) stored in catalogue
data values stored in fixed-size slots in data pages

Since record format is frequently used at query time, should be in memory.

Variable-length Records 60/71

Some encoding schemes for variable-length records:

14/03/2016, 8:36 PMWeek 03 Lecture

Page 19 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

Prefix each field by length

Terminate fields by delimiter

Array of offsets

Converting Records to Tuples 61/71

A Record is an array of bytes (byte[])

representing the data values from a typed Tuple

A Tuple is a collection of named,typed values

analogous to a struct in C

Information on how to interpret the bytes as typed values

will be contained in schema data in DBMS catalogue
may be stored in the header for the data file
may be stored partly in the record and partly in the schema

For variable-length records, some formatting info ...

must be stored in the record or in the page directory

... Converting Records to Tuples 62/71

DBMSs typically define a fixed set of field types, e.g.

DATE, FLOAT, INTEGER, NUMBER(n), VARCHAR(n), ...

This determines implementation-level data types:

DATE time_t

FLOAT float,double

INTEGER int,long

NUMBER(n) int[] (?)

VARCHAR(n) char[]

... Converting Records to Tuples 63/71

A Tuple can be defined as

14/03/2016, 8:36 PMWeek 03 Lecture

Page 20 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

a list of field descriptors for a record instance
(where a FieldDesc gives (offset,length,type) information)
along with a reference to the Record data

typedef struct {
 ushort nfields; // # fields
 FieldDesc fields[]; // field descriptions
 Record data;
} Tuple;

Fields are derived from relation descriptor + record instance data.

... Converting Records to Tuples 64/71

The data field could be either

a pointer to byte-chunk stored elsewhere in memory

data itself appended to struct (used widely in PostgreSQL)

PostgreSQL Tuples 65/71

Definitions: include/postgres.h, include/access/*tup*.h

Functions: backend/access/common/*tup*.c

e.g. HeapTuple heap_form_tuple(desc, values[], isnull[])
e.g. heap_deform_tuple(tuple, desc, values[], isnull[])

PostgreSQL defines tuples via:

a contiguous chunk of memory
starting with a header giving e.g. #fields, nulls
followed by the data values (as sequence of Datum)

... PostgreSQL Tuples 66/71

Tuple structure:

14/03/2016, 8:36 PMWeek 03 Lecture

Page 21 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

... PostgreSQL Tuples 67/71

Tuple-related data types:

// representation of a data value
typedef uintptr_t Datum;

The actual data value:

may be stored in the Datum (e.g. int)
may have a header with length (for varlen attributes)
may be stored in a TOAST file

... PostgreSQL Tuples 68/71

Tuple-related data types: (cont)

typedef struct HeapTupleData
{
 uint32 t_len; // length of *t_data
 ItemPointerData t_self; // SelfItemPointer
 Oid t_tableOid; // table the tuple came from
 HeapTupleHeader t_data; // tuple header and data
} HeapTupleData;

PostgreSQL allocates a single block of data for tuple

containing the above struct, followed by data byte[]
no explicit field for data, it comes after bitmap (see next)

... PostgreSQL Tuples 69/71

Tuple-related data types: (cont)

typedef struct HeapTupleHeaderData // simplified
{
 HeapTupleFields t_heap;
 ItemPointerData t_ctid; // TID of this tuple or newer version
 uint16 t_infomask2; // number of attributes + flags
 uint16 t_infomask; // flags e.g. has_null, has_varwidth

14/03/2016, 8:36 PMWeek 03 Lecture

Page 22 of 22file:///Users/jas/Dropbox/cs9315/16s1/lectures/week03/notes.html

 uint8 t_hoff; // sizeof header incl. bitmap+padding
 // above is fixed size (23 bytes) for all heap tuples
 bits8 t_bits[1]; // bitmap of NULLs, variable length
 // actual data follows at end of struct
} HeapTupleHeaderData;

... PostgreSQL Tuples 70/71

Tuple-related data types: (cont)

typedef struct HeapTupleFields // simplified
{
 TransactionId t_xmin; // inserting xact ID
 TransactionId t_xmax; // deleting or locking xact ID
 CommandId t_cid; // inserting/deleting command ID
} HeapTupleFields;

Note that not all system fields from stored tuple appear

both xmin/xmax are stored, but only one of cmin/cmax

... PostgreSQL Tuples 71/71

Operations on Tuples:

// create Tuple from values
HeapTuple
heap_form_tuple(TupleDesc tupDesc, Datum *values, bool *isnull)

// return Datum given Tuple, attr and descriptor
// sets isnull to true if value is NULL
#define heap_getattr(tup, attnum, tupleDesc, isnull) ...

// returns true if attribute has no value
bool heap_attisnull(HeapTuple tup, int attnum) ...

// produce a modified tuple from an existing one
HeapTuple
heap_modify_tuple(HeapTuple tuple, TupleDesc tupleDesc,
 Datum *replValues, bool *replIsnull,
 bool *doReplace)

Produced: 14 Mar 2016

