
21/03/2016, 8:24 PMWeek 04 Lecture

Page 1 of 10http://localhost:8080/cs9315/16s1/lectures/week04/notes.html

Week 04 Lecture

Implementing Relational Operations

DBMS Architecture (revisited) 2/31

Implementation of relational operations in DBMS:

Relational Operations 3/31

DBMS core = relational engine, with implementations of

selection, projection, join, set operations
scanning, sorting, grouping, aggregation, ...

In this part of the course:

examine methods for implementing each operation
develop cost models for each implementation
characterise when each method is most effective

Terminology reminder:

tuple = record = collection of data values under some schema
page = block = collection of tuples + management data = i/o unit
relation = table ≅ file = collection of tuples

... Relational Operations 4/31

Two "dimensions of variation":

which relational operation (e.g. Sel, Proj, Join, Sort, ...)
which access-method (e.g. file struct: heap, indexed, hashed, ...)

Each query method involves an operator and a file structure:

e.g. primary-key selection on hashed file
e.g. primary-key selection on indexed file

21/03/2016, 8:24 PMWeek 04 Lecture

Page 2 of 10http://localhost:8080/cs9315/16s1/lectures/week04/notes.html

e.g. join on ordered heap files (sort-merge join)
e.g. join on hashed files (hash join)
e.g. two-dimensional range query on R-tree indexed file

As well as query costs, consider update costs (insert/delete).

... Relational Operations 5/31

SQL vs DBMS engine

select ... from R where C
find relevant tuples (satisfying C) in file for R

insert into R values(...)
place new tuple in some page of file for R

delete from R where C
find relevant tuples and "remove" from file for R

update R set ... where C
find relevant tuples in file for R and "change" them

Cost Models

Cost Models 7/31

An important aspect of this course is

analysis of cost of various query methods

Cost can be measured in terms of

Time Cost: total time taken to execute method, or
Page Cost: number of pages read and/or written

Assumptions in our cost models:

memory (RAM) is "small", fast, byte-at-a-time
disk storage is very large, slow, page-at-a-time
every request to read/write a page results in a read/write

Trying to estimate costs with multiple concurrent ops and buffering is difficult!

... Cost Models 8/31

In developing cost models, we also assume:

a relation is a set of r tuples, with average size R bytes
the tuples are stored in b data pages on disk
each page has size B bytes and contains up to c tuples
the tuples which answer query q are contained in bq pages
data is transferred disk↔memory in whole pages
cost of disk↔memory transfer Tr/w is very high

21/03/2016, 8:24 PMWeek 04 Lecture

Page 3 of 10http://localhost:8080/cs9315/16s1/lectures/week04/notes.html

... Cost Models 9/31

Our cost models are "rough" (based on assumptions)

But do give an O(x) feel for how expensive operations are.

Back-of-the-envelope calculation: how many piano tuners in Sydney?

Sydney has ≅ 4 000 000 people
Average household size ≅ 3 ∴ 1 300 000 households
Lets say that 1 in 10 households owns a piano
Therefore there are ≅ 130 000 pianos
Say people get their piano tuned every 2 years (on average)
Say a tuner can do 2/day, 250 working-days/year
Therefore 1 tuner can do 500 pianos per year
Therefore Sydney would need ≅ 130000/2/500 = 130 tuners

Actual number of tuners in Yellow Pages = 120
Example borrowed from Alan Fekete at Sydney University.

Query Types 10/31

Type SQL RelAlg a.k.a.

Scan select * from R R -

Proj select x,y from R Proj[x,y]R -

Sort select * from R
order by x

Sort[x]R ord

Sel1 select * from R
where id = k

Sel[id=k]R one

Seln select * from R
where a = k

Sel[a=k]R -

Join1 select * from R,S
where R.id = S.r

R Join[id=r] S -

Different query classes exhibit different query processing behaviours.

Example File Structures 11/31

When describing file structures

use a large box to represent a page
use either a small box or tupi (or reci) to represent a tuple
sometimes refer to tuples via their key

mostly, key corresponds to the notion of "primary key"

21/03/2016, 8:24 PMWeek 04 Lecture

Page 4 of 10http://localhost:8080/cs9315/16s1/lectures/week04/notes.html

sometimes, key means "search key" in selection condition

... Example File Structures 12/31

Consider three simple file structures:

heap file ... tuples added to any page which has space
sorted file ... tuples arranged in file in key order
hash file ... tuples placed in pages using hash function

All files are composed of b primary blocks/pages

Some records in each page may be marked as "deleted".

Exercise 1: Operation Costs 13/31

For each of the following file structures

determine #page-reads + #page-writes for each operation

You can assume the existence of a file header containing

values for r, R, b, B, c
index of first page with free space (and a free list)

Assume also

each page contains a header and directory as well as tuples
no buffering (worst case scenario)

Operation Costs Example 14/31

Heap file with b = 4, c = 4:

21/03/2016, 8:24 PMWeek 04 Lecture

Page 5 of 10http://localhost:8080/cs9315/16s1/lectures/week04/notes.html

... Operation Costs Example 15/31

Sorted file with b = 4, c = 4:

... Operation Costs Example 16/31

Hashed file with b = 3, c = 4, h(k) = k%3

Scanning

18/31

21/03/2016, 8:24 PMWeek 04 Lecture

Page 6 of 10http://localhost:8080/cs9315/16s1/lectures/week04/notes.html

Scanning
Consider the query:

select * from Rel;

Operational view:

for each page P in file of relation Rel {
 for each tuple t in page P {
 add tuple t to result set
 }
}

Cost: read every data page once

Time Cost = b.Tr, Page Cost = b

... Scanning 19/31

Scan implementation when file has overflow pages, e.g.

... Scanning 20/31

In this case, the implementation changes to:

for each page P in file of relation T {
 for each tuple t in page P {
 add tuple t to result set
 }
 for each overflow page V of page P {
 for each tuple t in page V {
 add tuple t to result set
} } }

Cost: read each data and overflow page once

Time Cost = (b + bOv)Tr, Page Cost = b + bOv

where bOv = total number of overflow pages

Selection via Scanning 21/31

Consider a one query like:

21/03/2016, 8:24 PMWeek 04 Lecture

Page 7 of 10http://localhost:8080/cs9315/16s1/lectures/week04/notes.html

select * from Employee where id = 762288;

In an unordered file, search for matching tuple requires:

Guaranteed at most one answer; could be in any page.

... Selection via Scanning 22/31

Overview of scan process:

for each page P in relation Employee {
 for each tuple t in page P {
 if (t.id == 762288) return t
} }

Cost analysis for one searching in unordered file

best case: read one page, find tuple
worst case: read all b pages, find in last (or don't find)
average case: read half of the pages (b/2)

Page Costs: Costavg = b/2 Costmin = 1 Costmax = b

Exercise 2: Cost of Search in Hashed File 23/31

Consider the hashed file structure b = 10, c = 4, h(k) = k%10

Describe how the following queries

select * from R where k = 51;
select * from R where k > 50;

might be solved in a file structure like the above (h(k) = k%b).

Estimate the minimum and maximum cost (as #pages read)

Relation Copying 24/31

Consider an SQL statement like:

create table T as (select * from S);

Effectively, copies data from one file to another.

21/03/2016, 8:24 PMWeek 04 Lecture

Page 8 of 10http://localhost:8080/cs9315/16s1/lectures/week04/notes.html

Conceptually:

make empty relation T
for each tuple t in relation S {
 append tuple t to relation T
}

... Relation Copying 25/31

In terms of file operations:

File inf,outf; // input/output file handles
int ip,op; // input/output page numbers
int i; // tuple number in input buf
Tuple t; // current tuple
Buffer buf,obuf; // input/output file buffers

inf = openFile(fileName("S"), READ);
outf = openFile(fileName("T"), CREATE);
clear(obuf);
for (ip = op = 0; ip < nPages(inf); ip++) {
 buf = readPage(inf, ip);
 for (i = 0; i < nTuples(buf); i++) {
 t = getTuple(i, buf);
 addTuple(t, obuf);
 if (isFull(obuf)) {
 writePage(outf, op++, obuf);
 clear(obuf);
} } }
if (nTuples(obuf) > 0) writePage(outf, op, obuf);

Exercise 3: Cost of Relation Copy 26/31

Analyse cost for relation copying:

1. if both input and output are heap files
2. if input is sorted and output is heap file
3. if input is heap file and output is sorted

Assume bin = number of pages in input file

Give cost in terms of #pages read + #pages written

Cost Calculations (revisited) 27/31

Assumptions:

disk read time Tr ≅ Tw disk write time
average disk read/write time is a large constant value

21/03/2016, 8:24 PMWeek 04 Lecture

Page 9 of 10http://localhost:8080/cs9315/16s1/lectures/week04/notes.html

the real measure of cost is number of page↔disk transfers

So, in all future analyses, we ignore Tr and Tw

measure Cost as number of pages read and written

Also, when comparing two algorithms for same task

ignore cost of writing result; same in both cases

Exercise 4: PostgreSQL Tuple Visibility 28/31

Due to MVCC, PostgreSQL's getTuple(b,i) is not so simple

ith tuple in buffer b may be "live" or "dead" or ... ?

How does PostgreSQL recognise "dead" tuples?

What possible states might tuples have?

Assume: multiple concurrent transactions on tables.

Hint: tuple = (oid,xmin,xmax,...rest of data...)

Hint: include/access/htup.h

Hint: backend/utils/time/tqual.c

Scanning in PostgreSQL 29/31

Scanning defined in: backend/access/heap/heapam.c

Implements iterator data/operations:

HeapScanDesc ... struct containing iteration state
scan = heap_beginscan(rel,...,nkeys,keys)
(uses initscan() to do half the work (shared with rescan))
tup = heap_getnext(scan, direction)
(uses heapgettup() to do most of the work)
heap_endscan(scan) ... frees up scan struct
HeapKeyTest() ... implements key match test

... Scanning in PostgreSQL 30/31

typedef struct HeapScanDescData
{
 // scan parameters
 Relation rs_rd; // heap relation descriptor
 Snapshot rs_snapshot; // snapshot ... tuple visibility
 int rs_nkeys; // number of scan keys
 ScanKey rs_key; // array of scan key descriptors
 ...
 // state set up at initscan time
 PageNumber rs_npages; // number of pages to scan
 PageNumber rs_startpage; // page # to start at
 ...
 // scan current state, initally set to invalid

21/03/2016, 8:24 PMWeek 04 Lecture

Page 10 of 10http://localhost:8080/cs9315/16s1/lectures/week04/notes.html

 HeapTupleData rs_ctup; // current tuple in scan
 PageNumber rs_cpage; // current page # in scan
 Buffer rs_cbuf; // current buffer in scan
 ...
} HeapScanDescData;

Scanning in other File Structures 31/31

Above examples are for heap files

simple, unordered, maybe indexed, no hashing

Other access file structures in PostgreSQL:

btree, hash, gist, gin
each implements:

startscan, getnext, endscan
insert, delete
other file-specific operators

Produced: 21 Mar 2016

