
4/04/2016, 8:27 PMWeek 05 Lecture

Page 1 of 16file:///Users/jas/Dropbox/cs9315/16s1/lectures/week05/notes.html

Week 05 Lecture

Implementing Relational Operations

Implementing Relational Operators 2/53

Implementation of relational operations in DBMS:

... Implementing Relational Operators 3/53

So far, have considered ...

scanning (e.g. select * from R)

With file structures ...

heap file ... tuples added to any page which has space
sorted file ... tuples arranged in file in key order
hash file ... tuples placed in pages using hash function

Now ...

sorting (e.g. select * from R order by x)
projection (e.g. select x,y from R)
selection (e.g. select * from R where Cond)

and

indexes ... search trees based on pages/keys
signatures ... bit-strings which "summarize" tuples

... Implementing Relational Operators 4/53

File/query Parameters ...

r tuples of size R, b pages of size B, c tuples per page
Rel.k attribute in where clause, bq answer pages for query q
bOv overflow pages, average overflow chain length Ov

4/04/2016, 8:27 PMWeek 05 Lecture

Page 2 of 16file:///Users/jas/Dropbox/cs9315/16s1/lectures/week05/notes.html

File structures ...

Reminder on Cost Analyses 5/53

When showing the cost of operations, don't include Tr and Tw:

for queries, simply count number of pages read
for updates, use nr and nw to distinguish reads/writes

When comparing two methods for same query

ignore the cost of writing the result (same for both)

In counting reads and writes, assume minimal buffering

each request_page() causes a read
each release_page() causes a write (if page is dirty)

Sorting

The Sort Operation 7/53

Sorting is explicit in queries only in the order by clause

select * from Students order by name;

Sorting is used internally in other operations:

eliminating duplicate tuples for projection
ordering files to enhance select efficiency
implementing various styles of join
forming tuple groups in group by

Sort methods such as quicksort are designed for in-memory data.

For large data on disks, use external sorts such as merge sort.

Two-way Merge Sort 8/53

Example:

4/04/2016, 8:27 PMWeek 05 Lecture

Page 3 of 16file:///Users/jas/Dropbox/cs9315/16s1/lectures/week05/notes.html

... Two-way Merge Sort 9/53

Requires three in-memory buffers:

Assumption: cost of merge on two buffers ≅ 0.

Comparison for Sorting 10/53

Above assumes that we have a function to compare tuples.

Needs to understand ordering on different data types.

E.g. a function tupCompare(r1,r2,f) (cf. C's strcmp)

takes two tuples r1, r2 and a field name f
returns negative value if r1.f < r2.f
returns positive value if r1.f > r2.f
returns zero value if r1.f == r2.f

Can work on multiple attributes (sort on first, then second if equal, ...)

-- example multi-attribute sort
select * from Students
order by age desc, year_enrolled

Cost of Two-way Merge Sort 11/53

For a file containing b data pages:

4/04/2016, 8:27 PMWeek 05 Lecture

Page 4 of 16file:///Users/jas/Dropbox/cs9315/16s1/lectures/week05/notes.html

require ceil(log2b) passes to sort,
each pass requires b page reads, b page writes

Gives total cost: 2.b.ceil(log2b)

Example: Relation with r=105 and c=50 ⇒ b=2000 pages.

Number of passes for sort: ceil(log22000) = 11

Reads/writes entire file 11 times! Can we do better?

n-Way Merge Sort 12/53

Use N memory buffers: n input buffers, N-n output buffers

Typically, use: N-1 input buffers, 1 output buffer

... n-Way Merge Sort 13/53

Method:

// Produce n-1-page-long runs
for each group of n-1 pages in Rel {
 read pages into memory buffers
 sort group in memory
 write pages out to Temp via output buffer
}
// Merge runs until everything sorted
numberOfRuns = ceil(b/n)
while (numberOfRuns > 1) {
 for each group of n runs in Temp {
 merge into a single run via input buffers
 write run to newTemp via output buffer
 }
 numberOfRuns = ceil(numberOfRuns/n)
 Temp = newTemp // swap input/output files
}

... n-Way Merge Sort 14/53

Method for merging n runs:

for i = 1..n {
 read first page of run[i] into a buffer[i]

4/04/2016, 8:27 PMWeek 05 Lecture

Page 5 of 16file:///Users/jas/Dropbox/cs9315/16s1/lectures/week05/notes.html

 set current tuple cur[i] to first tuple in buffer[i]
}
while (more than 1 run still has tuples) {
 s = find buffer with smallest tuple as cur[i]
 copy tuple cur[i] to output buffer
 if (output buffer full) { write it and clear it}
 advance cur[i] to next tuple
 if (no more tuples in buffer[i]) {
 if (no more pages in run[i])
 mark run[i] as complete
 else {
 read next page of run[i] into buffer[i]
 set cur[i] to first tuple in buffer[i]
} } }
copy tuples in non-empty buffer to output

Exercise 1: Cost of n-Way Merge Sort 15/53

How many reads+writes to sort the following:

r = 1048576 tuples (220)
R = 62 bytes per tuple (fixed-size)
B = 4096 bytes per page
H = 96 bytes of header data per page
D = 1 presence bit per tuple in page directory
all pages are full

Consider for the cases:

8 input buffers, 1 output buffer
32 input buffers, 1 output buffer
256 input buffers, 1 output buffer

Sorting in PostgreSQL 16/53

Sort uses a polyphase merge-sort (from Knuth):

backend/utils/sort/tuplesort.c

Tuples are mapped to SortTuple structs for sorting:

containing pointer to tuple and sort key
no need to reference actual Tuples during sort
unless multiple attributes used in sort

If all data fits into memory, sort using qsort().

If memory fills while reading, form "runs" and do disk-based sort.

... Sorting in PostgreSQL 17/53

Disk-based sort has phases:

divide input into sorted runs using HeapSort
merge using N buffers, one output buffer
N = as many buffers as workMem allows

Described in terms of "tapes" ("tape" ≅ sorted run)

4/04/2016, 8:27 PMWeek 05 Lecture

Page 6 of 16file:///Users/jas/Dropbox/cs9315/16s1/lectures/week05/notes.html

Implementation of "tapes": backend/utils/sort/logtape.c

... Sorting in PostgreSQL 18/53

Sorting is generic and comparison operators are defined in catalog:

// gets pointer to function via pg_operator
SelectSortFunction(Oid sortOperator,
 bool nulls_first,
 Oid *sortFunction,
 int *sortFlags);

// returns negative, zero, positive
ApplySortFunction(FmgrInfo *sortFunction,
 int sortFlags,
 Datum datum1, bool isNull1,
 Datum datum2, bool isNull2);

Flags indicate: ascending/descending, nulls-first/last.

Implementing Projection

The Projection Operation 20/53

Consider the query:

select distinct name,age from Employee;

If the Employee relation has four tuples such as:

(94002, John, Sales, Manager, 32)
(95212, Jane, Admin, Manager, 39)
(96341, John, Admin, Secretary, 32)
(91234, Jane, Admin, Secretary, 21)

then the result of the projection is:

(Jane, 21) (Jane, 39) (John, 32)

Note that duplicate tuples (e.g. (John,32)) are eliminated.

... The Projection Operation 21/53

The projection operation needs to:

1. scan the entire relation as input
already seen how to do scanning

2. remove unwanted attributes in output tuples
implementation depends on tuple internal structure

3. eliminate any duplicates produced
two approaches: sorting or hashing

Example of task 2:

4/04/2016, 8:27 PMWeek 05 Lecture

Page 7 of 16file:///Users/jas/Dropbox/cs9315/16s1/lectures/week05/notes.html

Sort-based Projection 22/53

Requires a temporary file/relation (Temp)

for each tuple T in Rel {
 T' = mkTuple([attrs],T)
 write T' to Temp
}

sort Temp on [attrs]

for each tuple T in Temp {
 if (T == Prev) continue
 write T to Result
 Prev = T
}

Exercise 2: Cost of Sort-based Projection 23/53

Consider a table R(x,y,z) with tuples:

Page 0: (1,1,'a') (11,2,'a') (3,3,'c')
Page 1: (13,5,'c') (2,6,'b') (9,4,'a')
Page 2: (6,2,'a') (17,7,'a') (7,3,'b')
Page 3: (14,6,'a') (8,4,'c') (5,2,'b')
Page 4: (10,1,'b') (15,5,'b') (12,6,'b')
Page 5: (4,2,'a') (16,9,'c') (18,8,'c')

SQL: create T as (select distinct y from R)

Assuming:

3 memory buffers, 2 for input, one for output
pages/buffers hold 3 R tuples (i.e. cR=3), 6 T tuples (i.e. cT=6)

Show how sort-based projection would execute this statement.

Cost of Sort-based Projection 24/53

The costs involved are (assuming n+1 buffers for sort):

scanning original relation Rel: bR (with cR)
writing Temp relation: bT (smaller tuples, cT > cR, sorted)
sorting Temp relation: 2.bT.ceil(lognb0) where b0 = ceil(bT/n)
removing duplicates from Temp: bT
writing the result relation: bOut (maybe less tuples)

Cost = sum of above = bR + bT + 2.bT.ceil(lognb0) + bT + bOut

4/04/2016, 8:27 PMWeek 05 Lecture

Page 8 of 16file:///Users/jas/Dropbox/cs9315/16s1/lectures/week05/notes.html

Hash-based Projection 25/53

Partitioning phase:

... Hash-based Projection 26/53

Duplicate elimination phase:

... Hash-based Projection 27/53

Algorithm for both phases:

for each tuple T in relation Rel {
 T' = mkTuple([attrs],T)
 H = h1(T', n)
 B = buffer for partition[H]
 insert T' into B
 if (B full) write and clear B
}
for each partition P in 0..n-1 {
 for each tuple T in partition P {
 H = h2(T, n)

4/04/2016, 8:27 PMWeek 05 Lecture

Page 9 of 16file:///Users/jas/Dropbox/cs9315/16s1/lectures/week05/notes.html

 B = buffer for hash value H
 if (T not in B) insert T into B
 // assumes B never gets full
 }
 write and clear all buffers
}

Exercise 3: Cost of Hash-based Projection 28/53

Consider a table R(x,y,z) with tuples:

Page 0: (1,1,'a') (11,2,'a') (3,3,'c')
Page 1: (13,5,'c') (2,6,'b') (9,4,'a')
Page 2: (6,2,'a') (17,7,'a') (7,3,'b')
Page 3: (14,6,'a') (8,4,'c') (5,2,'b')
Page 4: (10,1,'b') (15,5,'b') (12,6,'b')
Page 5: (4,2,'a') (16,9,'c') (18,8,'c')
-- and then the same tuples repeated for pages 6-11

SQL: create T as (select distinct y from R)

Assuming:

4 memory buffers, one for input, 3 for partitioning
pages/buffers hold 3 R tuples (i.e. cR=3), 4 T tuples (i.e. cT=4)
hash functions: h1(x) = x%3, h2(x) = (x%4)%3

Show how hash-based projection would execute this statement.

Cost of Hash-based Projection 29/53

The total cost is the sum of the following:

scanning original relation Rel: bR
writing partitions: bP (bR vs bP ?)
re-reading partitions: bP
writing the result relation: bOut

Cost = bR + 2bP + bOut

To ensure that n is larger than the largest partition ...

use hash functions (h1,h2) with uniform spread
allocate at least sqrt(bR) buffers
if insufficient buffers, maybe significant re-reading overhead

Index-only Projection 30/53

Can do projection without accessing data file iff ...

relation is indexed on (A1,A2,...An) (indexes described later)
projected attributes are a prefix of (A1,A2,...An)

Basic idea:

4/04/2016, 8:27 PMWeek 05 Lecture

Page 10 of 16file:///Users/jas/Dropbox/cs9315/16s1/lectures/week05/notes.html

scan through index file (which is already sorted on attributes)
duplicates are already adjacent in index, so easy to skip

Cost analysis ...

index has bi pages (where bi ≪ bR)
Cost = bi reads + bOut writes

Comparison of Projection Methods 31/53

Difficult to compare, since they make different assumptions:

index-only: needs an appropriate index
hash-based: needs buffers and good hash functions
sort-based: needs only buffers ⇒ use as default

Best case scenario for each (assuming n+1 in-memory buffers):

index-only: bi + bOut ≪ bR + bOut
hash-based: bR + 2.bP + bOut
sort-based: bR + bT + 2.bT.ceil(lognb0) + bT + bOut

We normally omit bOut, since each method produces the same result

Projection in PostgreSQL 32/53

Code for projection forms part of execution iterators:

backend/executor/execQual.c

Functions involved with projection:

ExecProject(projInfo,...) ... extracts/stores projected data
ExecTargetList(...) ... makes new tuple from old tuple + projection info
ExecStoreTuple(newTuple,...) ... save tuple in output slot

Implementing Selection

Varieties of Selection 34/53

Selection: select * from R where C

filters a subset of tuples from one relation R
based on a condition C on the attribute values

We consider three distinct styles of selection:

1-d (one dimensional) (condition uses only 1 attribute)
n-d (multi-dimensional) (condition uses >1 attribute)
similarity (approximate matching, with ranking)

Each style has several possible file-structures/techniques.

4/04/2016, 8:27 PMWeek 05 Lecture

Page 11 of 16file:///Users/jas/Dropbox/cs9315/16s1/lectures/week05/notes.html

... Varieties of Selection 35/53

We can view a relation as defining a tuple space

assume relation R with attributes a1,...,an
attribute domains of R specify a n-dimensional space
each tuple (v1,v2,...,vn) ∈ R is a point in that space
queries specify values/ranges on N≥1 dimensions
a query defines a point/line/plane/region of the n-d space
results are tuples lying at/on/in that point/line/plane/region

E.g. if N=n, we are checking existence of a tuple (at a point)

... Varieties of Selection 36/53

... Varieties of Selection 37/53

One-dimensional selection queries = condition on single attribute.

one: select * from R where k = val

where k is a unique attribute and val is a constant

pmr: select * from R where k = val

where k is non-unique and val is a constant

range: select * from R where k ≥ lo and k ≤ hi

where k is any attribute and lo and hi are constants

either lo or hi may be omitted for open-ended range

Exercise 4: Query Types 38/53

Using the relation:

create table Courses (
 id integer primary key,
 code char(8), -- e.g. 'COMP9315'

4/04/2016, 8:27 PMWeek 05 Lecture

Page 12 of 16file:///Users/jas/Dropbox/cs9315/16s1/lectures/week05/notes.html

 title text, -- e.g. 'Computing 1'
 year integer, -- e.g. 2000..2016
 convenor integer references Staff(id),
 constraint once_per_year unique (code,year)
);

give examples of each of the following query types:

1. a 1-d one query, an n-d one query
2. a 1-d pmr query, an n-d pmr query
3. a 1-d range query, an n-d range query

Suggest how many solutions each might produce ...

Implementing Select Efficiently 39/53

Two basic approaches:

physical arrangement of tuples
sorting (search strategy)
hashing (static, dynamic, n-dimensional)

additional indexing information
index files (primary, secondary, trees)
signatures (superimposed, disjoint)

Our analyses assume: 1 input buffer available for each relation.

If more buffers are available, most methods benefit.

Heap Files
Note: this is not "heap" as in the top-to-bottom ordered tree.
It means simply an unordered collection of tuples in a file.

Heap File Structure 41/53

The simplest possible file organisation.

New tuples inserted at end of file; tuples deleted by marking.

42/53

4/04/2016, 8:27 PMWeek 05 Lecture

Page 13 of 16file:///Users/jas/Dropbox/cs9315/16s1/lectures/week05/notes.html

Selection in Heaps
For all selection queries, the only possible strategy is:

// select * from R where C
f = openFile(fileName("R"),READ);
for (p = 0; p < nPages(f); p++) {
 buf = readPage(f, p);
 for (i = 0; i < nTuples(buf); i++) {
 tup = getTuple(buf,i);
 if (tup satisfies C)
 add tup to result set
 }
}

i.e. linear scan through file searching for matching tuples

... Selection in Heaps 43/53

The heap is scanned from the first to the last page:

Costrange = Costpmr = b

If we know that only one tuple matches the query (one query),
a simple optimisation is to stop the scan once that tuple is found.

Costone : Best = 1 Average = b/2 Worst = b

Insertion in Heaps 44/53

Insertion: new tuple is appended to file (in last page).

f = openFile(fileName("R"),READ|WRITE);
b = nPages(f)-1;
buf = readPage(f, b); // request page
if (isFull(buf)) // all slots used
 { b++; clear(buf); }
if (tooLarge(newTup,buf)) // not enough space for tuple
 { deal with oversize tuple }
insertTuple(newTup, buf);
writePage(f, b, buf); // mark page as dirty & release

Costinsert = 1r + 1w

Plus possible extra writes for oversize tuples, e.g. PostgreSQL's TOAST files

... Insertion in Heaps 45/53

Alternative strategy:

find any page from R with enough space
preferably a page already loaded into memory buffer

4/04/2016, 8:27 PMWeek 05 Lecture

Page 14 of 16file:///Users/jas/Dropbox/cs9315/16s1/lectures/week05/notes.html

PostgreSQL's strategy:

use last updated page of R in buffer pool
otherwise, search buffer pool for page with enough space
assisted by free space map (FSM) associated with each table
for details: backend/access/heap/{heapam.c,hio.c}

... Insertion in Heaps 46/53

PostgreSQL's tuple insertion:

heap_insert(Relation relation, // relation desc
 HeapTuple newtup, // new tuple data
 CommandId cid, ...) // SQL statement

finds page which has enough free space for newtup
ensures page loaded into buffer pool and locked
copies tuple data into page buffer, sets xmin, etc.
marks buffer as dirty
writes details of insertion into transaction log
returns OID of new tuple if relation has OIDs

Deletion in Heaps 47/53

SQL: delete from R where Condition

Implementation of deletion:

f = openFile(fileName("R"),READ|WRITE);
for (p = 0; p < nPages(f); p++) {
 buf = readPage(f, p);
 ndels = 0;
 for (i = 0; i < nTuples(buf); i++) {
 tup = getTuple(buf,i);
 if (tup satisfies Condition)
 { ndels++; deleteTuple(buf,i); }
 }
 if (ndels > 0) writePage(f, p, buf);
 if (ndels > 0 && unique) break;
}

If buffers, read = request, write = mark-as-dirty

Exercise 5: Cost of Deletion in Heaps 48/53

Consider the following queries ...

delete from Employees where id = 12345 -- one
delete from Employees where dept = 'Marketing' -- pmr
delete from Employees where 40 <= age and age < 50 -- range

Show how each will be executed and estimate the cost, assuming:

b = 100, bq2 = 3, bq3 = 20

State any other assumptions.

Generalise the cost models for each query type.

4/04/2016, 8:27 PMWeek 05 Lecture

Page 15 of 16file:///Users/jas/Dropbox/cs9315/16s1/lectures/week05/notes.html

... Deletion in Heaps 49/53

PostgreSQL tuple deletion:

heap_delete(Relation relation, // relation desc
 ItemPointer tid, ..., // tupleID
 CommandId cid, ...) // SQL statement

gets page containing tuple into buffer pool and locks it
sets flags, commandID and xmax in tuple; dirties buffer
writes indication of deletion to transaction log (at commit time)

Vacuuming eventually compacts space in each page.

Updates in Heaps 50/53

SQL: update R set F = val where Condition

Analysis for updates is similar to that for deletion

scan all pages
replace any updated tuples (within each page)
write affected pages to disk

Costupdate = br + bqw

Complication: new version of tuple larger than old version (too big for page)

Solution: delete, re-organise free space, then insert

... Updates in Heaps 51/53

PostgreSQL tuple update:

heap_update(Relation relation, // relation desc
 ItemPointer otid, // old tupleID
 HeapTuple newtup, ..., // new tuple data
 CommandId cid, ...) // SQL statement

essentially does delete(otid), then insert(newtup)
also, sets old tuple's ctid field to reference new tuple
can also update-in-place if no referencing transactions

Heaps in PostgreSQL 52/53

PostgreSQL stores all table data in heap files (by default).

Typically there are also associated index files.

If a file is more useful in some other form:

PostgreSQL may make a transformed copy during query execution
programmer can set it via create index...using hash

Heap file implementation: src/backend/access/heap

4/04/2016, 8:27 PMWeek 05 Lecture

Page 16 of 16file:///Users/jas/Dropbox/cs9315/16s1/lectures/week05/notes.html

... Heaps in PostgreSQL 53/53

PostgreSQL "heap file" may use multiple physical files

files are named after the OID of the corresponding table
first data file is called simply OID
if size exceeds 1GB, create a fork called OID.1
add more forks as data size grows (one fork for each 1GB)
other files:

free space map (OID_fsm), visibility map (OID_vm)
optionally, TOAST file (if table has varlen attributes)

for details: Chapter 55 in PostgreSQL documentation

Produced: 4 Apr 2016

