
Week 06 Lecture

Assignment 1 Review 1/54

Add a new base data type to PostgreSQL

Email addresses: local @ domain

Variable lengths, up to 128 chars, case-insensitive

Operators: = same, > greater (dom,loc), ~ same domain, etc.

Support btree index and hashed files

Local ::= NamePart NameParts
Domain ::= NamePart '.' NamePart NameParts
NamePart ::= Letter | Letter NameChars (Letter|Digit)
NameParts ::= Empty | '.' NamePart NameParts
NameChars ::= Empty | (Letter|Digit|'-') NameChars

Need: storage structure, in/out/operator functions, operator classes

... Assignment 1 Review 2/54

Decisions for stored representation:

split into local+domain or keep as one string
canonicalize before storing or when using operators
fixed-length structure or variable length structure

Typical solution:

struct Email { char local[128]; char domain[128]; }

Problems: wastes space, buffers too short (129 for '\0')

Better solution:

struct Email { int32 len; int32 dom0; char addr[1]; }

Assumes: copy whole string, convert to lower-case, replace '@' by '\0'

... Assignment 1 Review 3/54

Storing in canonical form (e.g. all lower-case), and pre-split

simplifies query-time operations like email_cmp()

Having a generic email_cmp() function

simplifies rest of code, especially operator functions

Accesing data in var-length pre-split struct:

struct Email *ep;
ep = (struct Email *)PG_GETARG_POINTER(0);
char *local = &(ep->addr[0]);
char *domain = &(ep->addr[ep->dom0]);

... Assignment 1 Review 4/54

Common errors ...

struct Email { char *local; char *domain; }
tuple data must be stored within the struct

buffers of size 128 (should be 129, unless storing length)
sscanf(str, "[^@]@[^@]", locBuf, domBuf)
or even a regex like "[A-Za-z0-9.-]+@[A-Za-z0-9.-]+"
internallength = ? in create type EmailAddress

needs to match sizeof struct Email (unless varlen)
memory leaks (e.g. not freeing regex buffers)
thinking that 20 tuples is going to use indexing

Debugging server errors can be tedious (fprintf to log file)

Recap on Implementing Selection 5/54

Selection = select * from R where C

yields a subset of R tuples satisfying condition C
a very important (frequent) operation in relational databases

Types of selection determined by type of condition

one: select * from R where id = k
pmr: select * from R where age=65 (1-d)

 select * from R where age=65 and gender='m' (n-d)
rng: select * from R where age≥18 and age≤21 (1-d)

 select * from R where age between 18 and 21 (n-d)
 and height between 160 and 190

... Recap on Implementing Selection 6/54

Strategies for implementing selection efficiently

arrangement of tuples in file (e.g. sorting, hashing)
auxiliary data structures (e.g. indexes, signatures)

Interested in cost for select, delete, update, and insert

for select, simply count number of pages read nr
for others, use nr and nw to distinguish reads/writes

Typical file structure has

b main data pages, bOv overflow pages, c tuples per page
auxiliary files with e.g. oversized values, index entries

Sorted Files

Sorted Files 8/54

Records stored in file in order of some field k (the sort key).

Makes searching more efficient; makes insertion less efficient

E.g. assume c = 4

... Sorted Files 9/54

In order to mitigate insertion costs, use overflow blocks.

Total number of overflow blocks = bov.

Average overflow chain length = Ov = bov / b.

Bucket = data page + its overflow page(s)

Selection in Sorted Files 10/54

For one queries on sort key, use binary search.

// select * from R where k = val (sorted on R.k)
lo = 0; hi = b-1
while (lo <= hi) {
 mid = (lo+hi) div 2;
 (tup,loVal,hiVal) = searchBucket(f,mid,k,val);
 if (tup != null) return tup;
 else if (val < loVal) hi = mid - 1;
 else if (val > hiVal) lo = mid + 1;
 else return NOT_FOUND;
}
return NOT_FOUND;

where f is file for relation, mid,lo,hi are page indexes,
 k is a field/attr, val,loVal,hiVal are values for k

... Selection in Sorted Files 11/54

Search a page and its overflow chain for a key value

searchBucket(f,p,k,val)
{
 buf = getPage(f,p);
 (tup,min,max) = searchPage(buf,k,val,+INF,-INF)
 if (tup != NULL) return(tup,min,max);

 ovf = openOvFile(f);
 ovp = ovflow(buf);
 while (tup == NULL && ovp != NO_PAGE) {
 buf = getPage(ovf,ovp);
 (tup,min,max) = searchPage(buf,k,val,min,max)
 ovp = ovflow(buf);
 }
 return (tup,min,max);
}

Assumes each page contains index of next page in Ov chain

... Selection in Sorted Files 12/54

Search within a page for key; also find min/max key values

searchPage(buf,k,val,min,max)
{
 res = NULL;
 for (i = 0; i < nTuples(buf); i++) {
 tup = getTuple(buf,i);
 if (tup.k == val) res = tup;
 if (tup.k < min) min = tup.k;
 if (tup.k > max) max = tup.k;
 }
 return (res,min,max);
}

... Selection in Sorted Files 13/54

The above method treats each bucket like a single large page.

Cases:

best: find tuple in first data page we read
worst: full binary search, and not found

examine log2b data pages
plus examine all of their overflow pages

average: examine some data pages + their overflow pages

Costone : Best = 1 Worst = log2 b + bov

Average case cost analysis relies on assumptions (e.g. data distribution)

Exercise 1: Searching in Sorted File 14/54

Consider this sorted file with overflows (b=5, c=4):

Compute the cost for answering each of the following:

select * from R where k = 24

select * from R where k = 3
select * from R where k = 14
select max(k) from R

Exercise 2: Optimising Sorted-file Search 15/54

The searchBucket(f,p,k,val) function requires:

read the pth page from data file
scan it to find a match and min/max k values in page
while no match, repeat the above for each overflow page
if we find a match in any page, return it
otherwise, remember min/max over all pages in bucket

Suggest an optimisation that would improve searchBucket() performance for most buckets.

... Selection in Sorted Files 16/54

For pmr query, on non-unique attribute k

assume file is sorted on k
tuples containing k may appear in several pages

Begin by locating a page p containing k=val (as for one query).

Scan backwards and forwards from p to find matches.

Thus, Costpmr = Costone + (bq-1).(1+Ov)

... Selection in Sorted Files 17/54

For range queries on unique sort key (e.g. primary key):

use binary search to find lower bound
read sequentially until reach upper bound

Costrange = Costone + (bq-1).(1+Ov)

If secondary key, similar method to pmr.

... Selection in Sorted Files 18/54

So far, have assumed query condition involves sort key k.

If condition contains attribute j, not the sort key

file is unlikely to be sorted by j as well
sortedness gives no searching benefits

Costone, Costrange, Costpmr as for heap files

Updates to Sorted Files 19/54

Insertion approach:

find appropriate page for tuple (via binary search)
if page not full, insert into page
otherwise, insert into next overflow block with space

Thus, Costinsert = Costone + δw (where δw = 1 or 2)

Deletion strategy:

find matching tuple(s)
mark them as deleted

Cost depends on selectivity of selection condition

Thus, Costdelete = Costselect + bqw

Hashed Files

Hashing 21/54

Basic idea: use key value to compute page address of tuple.

e.g. tuple with key = v is stored in page i

Requires: hash function h(v) that maps KeyDomain → [0..b-1].

hashing converts key value (any type) into integer value
integer value is then mapped to page index
note: can view integer value as a bit-string

... Hashing 22/54

PostgreSQL hash function (simplified):

uint32 hash_any(unsigned char *k, register int keylen)
{
 register uint32 a, b, c, len;
 /* Set up the internal state */
 len = keylen; a = b = 0x9e3779b9; c = 3923095;
 /* handle most of the key */
 while (len >= 12) {
 a += (k[0] + (k[1]<<8) + (k[2]<<16) + (k[3]<<24));
 b += (k[4] + (k[5]<<8) + (k[6]<<16) + (k[7]<<24));
 c += (k[8] + (k[9]<<8) + (k[10]<<16) + (k[11]<<24));
 mix(a, b, c); k += 12; len -= 12;

 }
 /* collect any data from last 11 bytes into a,b,c */
 mix(a, b, c);
 return c;
}

See backend/access/hash/hashfunc.c for details (incl mix())

... Hashing 23/54

hash_any() gives hash value as 32-bit quantity (uint32).

Two ways to map raw hash value into a page address:

if b = 2k, bitwise AND with k low-order bits set to one

uint32 hashToPageNum(uint32 hval) {
 uint32 mask = 0xFFFFFFFF;
 return (hval & (mask >> (32-k)));
}

otherwise, use mod to produce value in range 0..b-1

uint32 hashToPageNum(uint32 hval) {
 return (hval % b);
}

Hashing Performance 24/54

Aims:

distribute tuples evenly amongst buckets
have most buckets nearly full (attempt to minimise wasted space)

Note: if data distribution not uniform, address distribution can't be uniform.

Best case: every bucket contains same number of tuples.

Worst case: every tuple hashes to same bucket.

Average case: some buckets have more tuples than others.

Use overflow pages to handle "overfull" buckets (cf. sorted files)

All tuples in each bucket must have same hash value.

... Hashing Performance 25/54

Two important measures for hash files:

load factor: L = r/bc
average overflow chain length: Ov = bov/b

Three cases for distribution of tuples in a hashed file:

Case L Ov
Best ≅ 1 0

Worst >> 1 **
Average < 1 0<Ov<1

(** performance is same as Heap File)

To achieve average case, aim for 0.75 ≤ L ≤ 0.9.

Selection with Hashing 26/54

Best performance occurs for one queries on hash key field.

Basic strategy:

compute page address via hash function hash(val)
fetch that page and look for matching tuple
possibly fetch additional pages from overflow chain

Best Costone = 1 (find in data page)

Average Costone = 1+Ov/2 (scan half of ovflow chain)

Worst Costone = 1+max(OvLen) (find in last page of ovflow chain)

... Selection with Hashing 27/54

Select via hashing on unique key k (one)

// select * from R where k = val
f = openFile(relName("R"),READ);
p = hash(val) % nPages(f);
buf = getPage(f, p)
for (i = 0; i < nTuples(buf); i++) {
 tup = getTuple(buf,i);
 if (tup.k == val) return tup;
}
ovp = ovflow(buf);
while (ovp != NO_PAGE) {
 buf = getPage(ovf,ovp);
 for (i = 0; i < nTuples(Buf); i++) {
 tup = getTuple(buf,i);
 if (tup.k == val) return tup;
} }

... Selection with Hashing 28/54

Select via hashing on non-unique hash key k (pmr)

// select * from R where k = val
f = openFile(relName("R"),READ);
p = hash(val) % nPages(f);
buf = getPage(f, p)
for (i = 0; i < nTuples(buf); i++) {
 tup = getTuple(buf,i);
 if (tup.k == val) append tup to results
}
ovp = ovflow(buf);
while (ovp != NO_PAGE) {
 buf = getPage(ovf,ovp);
 for (i = 0; i < nTuples(Buf); i++) {
 tup = getTuple(buf,i);
 if (tup.k == val) append tup to results
} }

Costpmr = 1 + Ov

... Selection with Hashing 29/54

Hashing does not help with range queries** ...

Costrange = b + bov

Selection on attribute j which is not hash key ...

Costone, Costrange, Costpmr = b + bov

** unless the hash function is order-preserving (and most aren't)

Insertion with Hashing 30/54

Insertion uses similar process to one queries.

// insert tuple t with key=val into rel R
// f = data file ... ovf = ovflow file
p = hash(val) % nPages(R)
P = getPage(f,p)
if (tup fits in page P)
 { insert t into P; return }
for each overflow page Q of P {
 if (tup fits in page Q)
 { insert t into Q; return }
}
add new overflow page Q
link Q to previous overflow page
insert t into Q

Costinsert: Best: 1r + 1w Worst: 1+max(OvLen))r + 2w

Exercise 3: Insertion into Static Hashed File 31/54

Consider a file with b=4, c=3, d=2, h(x) = bits(d,hash(x))

Insert tuples in alpha order with the following keys and hashes:

k hash(k) k hash(k) k hash(k) k hash(k)

a 10001 g 00000 m 11001 s 01110

b 11010 h 00000 n 01000 t 10011

c 01111 i 10010 o 00110 u 00010

d 01111 j 10110 p 11101 v 11111

e 01100 k 00101 q 00010 w 10000

f 00010 l 00101 r 00000 x 00111

The hash values are the 5 lower-order bits from the full 32-bit hash.

Deletion with Hashing 32/54

Similar performance to select:

// delete from R where k = val

// f = data file ... ovf = ovflow file
p = hash(val) % nPages(R)
buf = getPage(f,p)
ndel = delTuples(buf,k,val)
if (ndel > 0) putPage(f,buf,p)
p = ovFlow(buf)
while (p != NO_PAGE) {
 buf = getPage(ovf,p)
 ndel = delTuples(buf,k,val)
 if (ndel > 0) putPage(ovf,buf,p)
 p = ovFlow(buf)
}

Extra cost over select is cost of writing back modified blocks.

Method works for both unique and non-unique hash keys.

Problem with Hashing... 33/54

So far, discussion of hashing has assumed a fixed file size (fixed b).

What size file to use?

the size we need right now (performance degrades as file overflows)
the maximum size we might ever need (signifcant waste of space)

Change file size ⇒ change hash function ⇒ rebuild file

Methods for hashing with dynamic files:

extendible hashing, dynamic hashing (need a directory, no overflows)
linear hashing (expands file "sytematically", no directory, has overflows)

... Problem with Hashing... 34/54

All flexible hashing methods ...

treat hash as 32-bit bit-string
adjust hashing by using more/less bits

Start with hash function to convert value to bit-string:

uint32 hash(unsigned char *val)

Require a function to extract d bits from bit-string:

unit32 bits(int d, uint32 val)

Use result of bits() as page address.

Exercise 4: Bit Manipulation 35/54

1. Write a function to display uint32 values as 01010110...

char *showBits(uint32 val, char *buf);

Analogous to gets() (assumes supplied buffer large enough)

2. Write a function to extract the d bits of a uint32

uint32 bits(int d, uint32 val);

If d > 0, gives low-order bits; if d < 0, gives high-order bits

... Problem with Hashing... 36/54

Important concept for flexible hashing: splitting

consider one page (all tuples have same hash value)
recompute page numbers by considering one extra bit
if current page is 101, new pages have hashes 0101 and 1101
some tuples stay in page 0101 (was 101)
some tuples move to page 1101 (new page)
also, rehash any tuples in overflow pages of page 101

Result: expandable data file, never requiring a complete file rebuild

... Problem with Hashing... 37/54

Example of splitting:

Tuples only show key value; assume h(val) = val

Linear Hashing 38/54

File organisation:

file of primary data blocks
file of overflow data blocks
a register called the split pointer

Uses systematic method of growing data file ...

hash function "adapts" to changing address range
systematic splitting controls length of overflow chains

Advantage: does not require auxiliary storage for a directory

Disadvantage: requires overflow pages (splits don't occur on full pages)

... Linear Hashing 39/54

File grows linearly (one block at a time, at regular intervals).

Has "phases" of expansion; during each phase, b doubles.

Selection with Lin.Hashing 40/54

If b=2d, the file behaves exactly like standard hashing.

Use d bits of hash to compute block address.

// select * from R where k = val
h = hash(val);
P = bits(d,h); // lower-order bits
for each tuple t in page P
 and its overflow pages {
 if (t.k == val) return t;
}

Average Costone = 1+Ov

... Selection with Lin.Hashing 41/54

If b != 2d, treat different parts of the file differently.

Parts A and C are treated as if part of a file of size 2d+1.

Part B is treated as if part of a file of size 2d.

Part D does not yet exist (B expands into it).

... Selection with Lin.Hashing 42/54

Modified search algorithm:

// select * from R where k = val
h = hash(val);
P = bits(d,h);
if (P < sp) { P = bits(d+1,h); }
for each tuple t in page P
 and its overflow blocks {
 if (t.k == val) return R;
}

43/54

File Expansion with Lin.Hashing

Exercise 5: Insertion into Linear Hashed File 44/54

Consider a file with b=4, c=3, d=2, sp=0, hash(x) as above

Insert tuples in alpha order with the following keys and hashes:

k hash(k) k hash(k) k hash(k) k hash(k)

a 10001 g 00000 m 11001 s 01110

b 11010 h 00000 n 01000 t 10011

c 01111 i 10010 o 00110 u 00010

d 01111 j 10110 p 11101 v 11111

e 01100 k 00101 q 00010 w 10000

f 00010 l 00101 r 00000 x 00111

The hash values are the 5 lower-order bits from the full 32-bit hash.

Insertion with Lin.Hashing 45/54

Abstract view:

P = bits(d,hash(val));
if (P < sp) P = bits(d+1,hash(val));
// bucket P = page P + its overflow pages
for each page Q in bucket P {
 if (space in Q) {
 insert tuple into Q
 break
 }
}
if (no insertion) {
 add new ovflow page to bucket P
 insert tuple into new page
}
if (need to split) {
 partition tuples from bucket sp

 into buckets sp and sp+2^d
 sp++;
 if (sp == 2^d) { d++; sp = 0; }
}

Splitting 46/54

How to decide that we "need to split"?

Two approaches to triggering a split:

split every time a tuple is inserted into full block
split when load factor reaches threshold (every k inserts)

Note: always split block sp, even if not full/"current"

Systematic splitting like this ...

eventually reduces length of every overflow chain
helps to maintain short average overflow chain length

... Splitting 47/54

Splitting process for block sp=01:

... Splitting 48/54

Detailed splitting algorithm:

// partitions tuples between two buckets
newp = sp + 2^d; oldp = sp;
buf = getPage(f,sp);
clear(oldBuf); clear(newBuf);
for (i = 0; i < nTuples(buf); i++) {
 tup = getTuple(buf,i);
 p = bits(d+1,hash(tup.k));
 if (p == newp)
 addTuple(newBuf,tup);
 else
 addTuple(oldBuf,tup);
}
p = ovflow(buf); oldOv = newOv = 0;
while (p != NO_PAGE) {
 ovbuf = getPage(ovf,p);
 for (i = 0; i < nTuples(ovbuf); i++) {
 tup = getTuple(buf,i);

 p = bits(d+1,hash(tup.k));
 if (p == newp) {
 if (isFull(newBuf)) {
 nextp = nextFree(ovf);
 ovflow(newBuf) = nextp;
 outf = newOv ? f : ovf;
 writePage(outf, newp, newBuf);
 newOv++; newp = nextp; clear(newBuf);
 }
 addTuple(newBuf, tup);
 }
 else {
 if (isFull(oldBuf)) {
 nextp = nextFree(ovf);
 ovflow(oldBuf) = nextp;
 outf = oldOv ? f : ovf;
 writePage(outf, oldp, oldBuf);
 oldOv++; oldp = nextp; clear(oldBuf);
 }
 addTuple(oldBuf, tup);
 }
 }
 addToFreeList(ovf,p);
 p = ovflow(buf);
}
sp++;
if (sp == 2^d) { d++; sp = 0; }

Insertion Cost 49/54

If no split required, cost same as for standard hashing:

Costinsert: Best: 1r + 1w, Avg: (1+Ov)r + 1w, Worst: (1+max(Ov))r + 2w

If split occurs, incur Costinsert plus cost of splitting:

read block sp (plus all of its overflow blocks)
write block sp (and its new overflow blocks)
write block sp+2d (and its new overflow blocks)

On average, Costsplit = (1+Ov)r + (2+Ov)w

Deletion with Lin.Hashing 50/54

Deletion is similar to ordinary static hash file.

But might wish to contract file when enough tuples removed.

Rationale: r shrinks, b stays large ⇒ wasted space.

Method: remove last bucket in data file (contracts linearly).

Involves a coalesce procedure which is an inverse split.

Hash Files in PostgreSQL 51/54

PostgreSQL uses linear hashing on tables which have been:

create index Ix on R using hash (k);

Hash file implementation: backend/access/hash

hashfunc.c ... a family of hash functions

hashinsert.c ... insert, with overflows
hashpage.c ... utilities + splitting
hashsearch.c ... iterator for hash files

Based on "A New Hashing Package for Unix", Margo Seltzer, Winter Usenix 1991

... Hash Files in PostgreSQL 52/54

PostgreSQL uses slightly different file organisation ...

has a single file containing main and overflow pages
has groups of main pages of size 2n
in between groups, arbitrary number of overflow pages
maintains collection of "split pointers" in header page
each split pointer indicates start of main page group

If overflow pages become empty, add to free list and re-use.

... Hash Files in PostgreSQL 53/54

PostgreSQL hash file structure:

... Hash Files in PostgreSQL 54/54

Converting bucket # to page address:

// which page is primary page of bucket
uint bucket_to_page(headerp, B) {
 uint *splits = headerp->hashm_spares;
 uint chunk, base, offset, lg2(uint);
 chunk = (B<2) ? 0 : lg2(B+1)-1;
 base = splits[chunk];
 offset = (B<2) ? B : B-(1<chunk);
 return (base + offset);
}
// returns ceil(log_2(n))
int lg2(uint n) {
 int i, v;
 for (i = 0, v = 1; v < n; v <= 1) i++;
 return i;
}

Produced: 12 Apr 2016

