
4/05/2016, 4:42 PMWeek 09 Lecture

Page 1 of 16file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week09/notes.html

Week 09 Lecture

Assignment 2

Assignment 2 2/55

Aim: implement multi-attribute linear hashed files (MALH files)

placement of tuples in buckets determined by MA hash
file expansion organised via linear hashing

Each "MALH file" represents one table ...

create table R (a0 text, a1 text, ... an-1 text);

Implemented as three physical files ...

R.info ... contains file parameters, e.g. n, r, b, d, sp, cv
R.data ... primary data pages, each with free, ov and tuples
R.ovflow ... overflow pages, same structure as data pages

... Assignment 2 3/55

Commands:

$./create R 3 5 "0,0:0,1:1,0:2,0:1,1:0,2"
... makes new MALH file called R with 3 attrs, 8 data pages, ...

$./gendata 1000 3 | ./insert R
... generates 1000 tuples and inserts them into R files ...

$./gendata 500 3 1001 13 | ./insert R
... generates another 500 tuples and inserts them into R ...

$./select R "?,eyes,girl"
... finds all tuples with "eyes" as second attribute value ...
... and "girl" as third attribute value ...

$./select R "123,?,?"
... finds all tuples with 123 as first attribute value ...

$./stats R
... display information about the relation/files (debugging) ...

... Assignment 2 4/55

Code is structured as a set of modules and ADTs ...

Bits ... functions on 32-bit bit-strings
ChVec ... data structures and operations on choice vectors
Page ... data structures and operations on pages
Query ... data structures and operations for query scans
Reln ... data structures and operations on relations

4/05/2016, 4:42 PMWeek 09 Lecture

Page 2 of 16file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week09/notes.html

Tuple ... data structures and operations on tuples
util ... miscellaneous helper functions
hash ... hash function (from PostgreSQL)

plus main programs (e.g. create.c, select.c) for commands

... Assignment 2 5/55

File structure:

... Assignment 2 6/55

Page structure:

... Assignment 2 7/55

Task 1: Multi-attribute hashing

current tuple hash function uses only first attribute
modify tupleHash() to use CV to build proper MA hash

Task 2: Selection (Querying)

functions in query.c are incomplete
implement query scan data structure and operations on it

4/05/2016, 4:42 PMWeek 09 Lecture

Page 3 of 16file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week09/notes.html

Task 3: Linear Hashing

current files don't grow primary data file ... just overflow
implement linear hashing ... split page sp after every c inserts
where c = B/R and B ≅ 1024 and R = 10n

... Assignment 2 8/55

Notes:

worth: 14%, due before: 3pm on Monday 23 May
work in same pairs as for Assignment 1
you can change any of the ADTs, except ...

do not change Reln or Page structures
you are not allowed to change any of the commands
no need to add any new ADTs

but update the Makefile appropriately if you do
submit Makefile and code for all ADTs
MA-hashing, scanning, linear hashing are all discussed in notes

Exercise 1: Queries with MA.Hashing 9/55

Consider a multi-attributed hashed file with tuples like (a,b,c)

where sp=0, d=6, CV = <(0,0),(0,1),(1,0),(2,0),(1,1),(0,2), ...>, and

hash (a) = ...00101101001101
hash (b) = ...00101101001101
hash (c) = ...00101101001101

What are the query hashes for each of the following queries:

(a,b,c), (a,?,c), (?,b,c), (a,?,?), (?,?,?)

Which buckets will be accessed in answering each query?

Tree Indexes for N-d Selection

Multi-dimensional Tree Indexes 11/55

Over the last 20 years, from a range of problem areas

different multi-d tree index schemes have been proposed
varying primarily in how they partition tuple-space

Consider three popular schemes: kd-trees, Quad-trees, R-trees.

Example data for multi-d trees is based on the following relation:

create table Rel (
 X char(1) check (X between 'a' and 'z'),
 Y integer check (Y between 0 and 9)
);

4/05/2016, 4:42 PMWeek 09 Lecture

Page 4 of 16file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week09/notes.html

... Multi-dimensional Tree Indexes 12/55

Example tuples:

Rel('a',1) Rel('a',5) Rel('b',2) Rel('d',1)
Rel('d',2) Rel('d',4) Rel('d',8) Rel('g',3)
Rel('j',7) Rel('m',1) Rel('r',5) Rel('z',9)

The tuple-space for the above tuples:

Exercise 2: Query Types and Tuple Space 13/55

Which part of the tuple-space does each query represent?

Q1: select * from Rel where X = 'd' and Y = 4
Q2: select * from Rel where 'j' < X ≤ 'r'
Q3: select * from Rel where X > 'm' and Y > 4
Q4: select * from Rel where 'k' ≤ X ≤ 'p' and 3 ≤ Y ≤ 6

kd-Trees 14/55

kd-trees are multi-way search trees where

each level of the tree partitions on a different attribute
each node contains n-1 key values, pointers to n subtrees

4/05/2016, 4:42 PMWeek 09 Lecture

Page 5 of 16file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week09/notes.html

... kd-Trees 15/55

How this tree partitions the tuple space:

Searching in kd-Trees 16/55

// Started by Search(Q, R, 0, kdTreeRoot)
Search(Query Q, Relation R, Level L, Node N)
{
 if (isDataPage(N)) {
 Buf = getPage(fileOf(R),idOf(N))
 check Buf for matching tuples
 } else {
 a = attrLev[L]
 if (!hasValue(Q,a))
 nextNodes = all children of N
 else {
 val = getAttr(Q,a)
 nextNodes = find(N,Q,a,val)
 }
 for each C in nextNodes
 Search(Q, R, L+1, C)
} }

Exercise 3: Searching in kd-Trees 17/55

Using the following kd-tree index

4/05/2016, 4:42 PMWeek 09 Lecture

Page 6 of 16file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week09/notes.html

Answer the queries (m,1), (a,?), (?,1), (?,?)

Quad Trees 18/55

Quad trees use regular, disjoint partitioning of tuple space.

for 2d, partition space into quadrants (NW, NE, SW, SE)
each quadrant can be further subdivided into four, etc.

Example:

... Quad Trees 19/55

Basis for the partitioning:

a quadrant that has no sub-partitions is a leaf quadrant
each leaf quadrant maps to a single data page
subdivide until points in each quadrant fit into one data page
ideal: same number of points in each leaf quadrant (balanced)
point density varies over space
⇒ different regions require different levels of partitioning
this means that the tree is not necessarily balanced

Note: effective for d≤5, ok for 6≤d≤10, ineffective for d>10

... Quad Trees 20/55

The previous partitioning gives this tree structure, e.g.

In this and following examples, we give coords of top-left,bottom-right of a region

Searching in Quad-tree 21/55

Space query example:

4/05/2016, 4:42 PMWeek 09 Lecture

Page 7 of 16file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week09/notes.html

Need to traverse: red(NW), green(NW,NE,SW,SE), blue(NE,SE).

Exercise 4: Searching in Quad-trees 22/55

Using the following quad-tree index

Answer the queries (m,1), (a,?), (?,1), (?,?)

R-Trees 23/55

R-trees use a flexible, overlapping partitioning of tuple space.

each node in the tree represents a kd hypercube
its children represent (possibly overlapping) subregions
the child regions do not need to cover the entire parent region

Overlap and partial cover means:

can optimize space partitioning wrt data distribution
so that there are similar numbers of points in each region

Aim: height-balanced, partly-full index pages (cf. B-tree)

... R-Trees 24/55

4/05/2016, 4:42 PMWeek 09 Lecture

Page 8 of 16file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week09/notes.html

Insertion into R-tree 25/55

Insertion of an object R occurs as follows:

start at root, look for children that completely contain R
if no child completely contains R, choose one of the children and expand its boundaries so that it does contain
R
if several children contain R, choose one and proceed to child
repeat above containment search in children of current node
once we reach data page, insert R if there is room
if no room in data page, replace by two data pages
partition existing objects between two data pages
update node pointing to data pages
(may cause B-tree-like propagation of node changes up into tree)

Note that R may be a point or a polygon.

Query with R-trees 26/55

Designed to handle space queries and "where-am-I" queries.

"Where-am-I" query: find all regions containing a given point P:

start at root, select all children whose subregions contain P
if there are zero such regions, search finishes with P not found
otherwise, recursively search within node for each subregion
once we reach a leaf, we know that region contains P

Space (region) queries are handled in a similar way

we traverse down any path that intersects the query region

Exercise 5: Query with R-trees 27/55

Using the following R-tree:

4/05/2016, 4:42 PMWeek 09 Lecture

Page 9 of 16file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week09/notes.html

Show how the following queries would be answered:

Q1: select * from Rel where X='a' and Y=4
Q2: select * from Rel where X='i' and Y=6
Q3: select * from Rel where 'c'≤X≤'j' and Y=5
Q4: select * from Rel where X='c'

Multi-d Trees in PostgreSQL 28/55

Up to version 8.2, PostgreSQL had R-tree implementation

Superseded by GiST = Generalized Search Trees

GiST indexes parameterise: data type, searching, splitting

via seven user-defined functions (e.g. picksplit())

GiST trees have the following structural constraints:

every node is at least fraction f full (e.g. 0.5)
the root node has at least two children (unless also a leaf)
all leaves appear at the same level

Details: src/backend/access/gist

Costs of Search in Multi-d Trees 29/55

Difficult to determine cost precisely.

Best case: pmr query where all attributes have known values

in kd-trees and quad-trees, follow single tree path
cost is equal to depth D of tree
in R-trees, may follow several paths (overlapping partitions)

Typical case: some attributes are unknown or defined by range

need to visit multiple sub-trees
how many depends on: range, choice-points in tree nodes

Note: can view unknown value X=? as range min(X) ≤ X ≤ max(X)

Implementing Join

Join 31/55

DBMSs are engines to store, combine and filter information.

Join (⋈) is the primary means of combining information.

4/05/2016, 4:42 PMWeek 09 Lecture

Page 10 of 16file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week09/notes.html

Join is important and potentially expensive

Most common join condition: equijoin, e.g. (R.pk = S.fk)

Join varieties (natural, inner, outer, semi, anti) all behave similarly.

We consider three strategies for implementing join

nested loop ... simple, widely applicable, inefficient without buffering
sort-merge ... works best if tables are soted on join attributes
hash-based ... requires good hash function and sufficient buffering

Join Example 32/55

Consider a university database with the schema:

create table Student(
 id integer primary key,
 name text, ...
);
create table Enrolled(
 stude integer references Student(id),
 subj text references Subject(code), ...
);
create table Subject(
 code text primary key,
 title text, ...
);

... Join Example 33/55

List names of students in all subjects, arranged by subject.

SQL query to provide this information:

select E.subj, S.name
from Student S, Enrolled E
where S.id = E.stude
order by E.subj, S.name;

And its relational algebra equivalent:

Sort[subj] (Project[subj,name] (Join[id=stude](Student,Enrolled)))

To simplify formulae, we denote Student by S and Enrolled by E

... Join Example 34/55

Some database statistics:

Sym Meaning Value

rS # student records 20,000

rE # enrollment records 80,000

cS Student records/page 20

cE Enrolled records/page 40

bS # data pages in Student 1,000

bE # data pages in Enrolled 2,000

4/05/2016, 4:42 PMWeek 09 Lecture

Page 11 of 16file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week09/notes.html

Also, in cost analyses below, N = number of memory buffers.

... Join Example 35/55

Out = Student ⋈ Enrolled relation statistics:

Sym Meaning Value

rOut # tuples in result 80,000

COut result records/page 80

bOut # data pages in result 1,000

Notes:

rOut ... one result tuple for each Enrolled tuple
COut ... result tuples have only subj and name
in analyses, ignore cost of writing result ... same in all methods

Nested Loop Join

Nested Loop Join 37/55

Basic strategy (R.a ⋈ S.b):

Result = {}
for each page i in R {
 pageR = getPage(R,i)
 for each page j in S {
 pageS = getPage(S,j)
 for each pair of tuples tR,tS
 from pageR,pageS {
 if (tR.a == tS.b)
 Result = Result ∪ (tR:tS)
} } }

Needs input buffers for R and S, output buffer for "joined" tuples

Terminology: R is outer relation, S is inner relation

Block Nested Loop Join 38/55

Method (for N memory buffers):

read N-2 page chunks of R relation into memory
for each S page, check join condition on all (tR,tS) pairs

... Block Nested Loop Join 39/55

4/05/2016, 4:42 PMWeek 09 Lecture

Page 12 of 16file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week09/notes.html

Best-case scenario: bR ≤ N-2

read bR pages of relation R into buffers
while R is buffered, read bS pages of S

Cost = bR + bS

Typical-case scenario: bR > N-2

read ceil(bR/N-2) chunks of pages from R
for each chunk, read bS pages of S

Cost = bR + bS . ceil(bR/N-2)

Note: requires rR.rS checks of the join condition

Exercise 6: Nested Loop Join Cost 40/55

Consider executing Join[i=j](S,T) with the following parameters:

rS = 1000, bS = 50, rT = 3000, bT = 150
S.i is primary key, and T has index on T.j
T is sorted on T.j, each S tuple joins with 2 T tuples
DBMS has N = 42 buffers available for the join

Calculate the cost for evaluating the above join

using block nested loop join
compute #pages read/written
compute #join-condition checks performed

Exercise 7: Nested Loop Join Cost (ii) 41/55

Compute the cost (# pages fetched) of (S ⋈ E)

Sym Meaning Value

rS # student records 20,000

rE # enrollment records 80,000

cS Student records/page 20

cE Enrolled records/page 40

bS # data pages in Student 1,000

bE # data pages in Enrolled 2,000

for N = 22, 202, 2002 and different inner/outer combinations

Exercise 8: Nested Loop Join Cost (cont) 42/55

If the query in the above example was:

select j.code, j.title, s.name
from Student s
 join Enrolled e on (s.id=e.student)
 join Subject j on (e.subj=j.code)

how would this change the previous analysis?

4/05/2016, 4:42 PMWeek 09 Lecture

Page 13 of 16file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week09/notes.html

What join combinations are there?

Assume 2000 subjects, with cJ = 10

How large would the intermediate tuples be? What assumptions?

Compute the cost (# pages fetched, # pages written) for N = 22

Block Nested Loop Join in Practice 43/55

Why block nested loop join is actually useful in practice ...

Many queries have the form

select * from R,S where r.i=s.j and r.x=k

This would typically be evaluated as

Join [i=j] ((Sel[r.x=k](R)), S)

If |Sel[r.x=k](R)| is small ⇒ may fit in memory (in small #buffers)

Index Nested Loop Join 44/55

A problem with nested-loop join:

needs repeated scans of entire inner relation S

If there is an index on S, we can avoid such repeated scanning.

Consider Join[R.i=S.j](R,S):

for each tuple r in relation R {
 use index to select tuples
 from S where s.j = r.i
 for each selected tuple s from S {
 add (r,s) to result
} }

... Index Nested Loop Join 45/55

This method requires:

one scan of R relation (bR)
only one buffer needed, since we use R tuple-at-a-time

for each tuple in R (rR), one index lookup on S
cost depends on type of index and number of results
best case is when each R.i matches few S tuples

Cost = bR + rR.SelS (SelS is the cost of performing a select on S).

Typical SelS = 1-2 (hashing) .. bq (unclustered index)

Trade-off: rR.SelS vs bR.bS, where bR ≪ rR and SelS ≪ bS

Sort-Merge Join

Sort-Merge Join 47/55

Basic approach:

sort both relations on join attribute (reminder: Join[R.i=S.j](R,S))
scan together using merge to form result (r,s) tuples

4/05/2016, 4:42 PMWeek 09 Lecture

Page 14 of 16file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week09/notes.html

Advantages:

no need to deal with "entire" S relation for each r tuple
deal with runs of matching R and S tuples

Disadvantages:

cost of sorting both relations (already sorted on join key?)
some rescanning required when long runs of S tuples

... Sort-Merge Join 48/55

Method requires several cursors to scan sorted relations:

r = current record in R relation
s = start of current run in S relation
ss = current record in current run in S relation

... Sort-Merge Join 49/55

Algorithm using query iterators/scanners:

Query ri, si; Tuple r,s;

ri = startScan("SortedR");
si = startScan("SortedS");
while ((r = nextTuple(ri)) != NULL
 && (s = nextTuple(si)) != NULL) {
 // align cursors to start of next common run
 while (r != NULL && r.i < s.j)
 r = nextTuple(ri);
 if (r == NULL) break;
 while (s != NULL && r.i > s.j)
 s = nextTuple(si);
 if (s == NULL) break;
 // must have (r.i == s.j) here
...

... Sort-Merge Join 50/55

...
 // remember start of current run in S
 TupleID startRun = scanCurrent(si)
 // scan common run, generating result tuples
 while (r != NULL && r.i == s.j) {
 while (s != NULL and s.j == r.i) {
 addTuple(outbuf, combine(r,s));
 if (isFull(outbuf)) {
 writePage(outf, outp++, outbuf);
 clearBuf(outbuf);
 }
 s = nextTuple(si);
 }
 r = nextTuple(ri);

4/05/2016, 4:42 PMWeek 09 Lecture

Page 15 of 16file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week09/notes.html

 setScan(si, startRun);
 }
}

... Sort-Merge Join 51/55

Buffer requirements:

for sort phase:
as many as possible (remembering that cost is O(logN))
if insufficient buffers, sorting cost can dominate

for merge phase:
one output buffer for result
one input buffer for relation R
(preferably) enough buffers for longest run in S

... Sort-Merge Join 52/55

Cost of sort-merge join.

Step 1: sort each relation that is not already sorted:

Cost = ∑i 2.bi (1 + logN-1(bi /N)) (with N buffers)

Step 2: merge sorted relations:

if every run of values in S fits completely in buffers,
merge requires single scan, Cost = bR + bS
if some runs in of values in S are larger than buffers,
need to re-scan run for each corresponding value from R

Sort-Merge Join on Example 53/55

Case 1: Join[id=stude](Student,Enrolled)

relations are not sorted on id#
memory buffers N=32; all runs are of length < 30

Cost = sort(S) + sort(E) + bS + bE

= 2bS(1+log31(bS/32)) + 2bE(1+log31(bE/32)) + bS + bE

= 2×1000×(1+2) + 2×2000×(1+2) + 1000 + 2000

= 6000 + 12000 + 1000 + 2000

= 21,000

... Sort-Merge Join on Example 54/55

Case 2: Join[id=stude](Student,Enrolled)

Student and Enrolled already sorted on id#
memory buffers N=3 (S input, E input, output)
5% of the "runs" in E span two pages
there are no "runs" in S, since id# is a primary key

For the above, no re-scans of E runs are ever needed

Cost = 2,000 + 1,000 = 3,000 (regardless of which relation is outer)

Exercise 9: Sort-merge Join Cost 55/55

4/05/2016, 4:42 PMWeek 09 Lecture

Page 16 of 16file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week09/notes.html

Consider executing Join[i=j](S,T) with the following parameters:

rS = 1000, bS = 50, rT = 3000, bT = 150
S.i is primary key, and T has index on T.j
T is sorted on T.j, each S tuple joins with 2 T tuples
DBMS has N = 42 buffers available for the join

Calculate the cost for evaluating the above join

using sort-merge join
compute #pages read/written
compute #join-condition checks performed

Produced: 4 May 2016

