
17/05/2016, 10:23 AMWeek 12

Page 1 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

Week 12

Assignment 2 1/60

How robust do I need to make it?

assume I won't be giving "nasty" inputs (e.g. no ???)
need to check appropriate number of items in tuples/queries

How do I know it's correct?

work out manually what you expect to see
run your code with diagnostic output to check
e.g. is it generating the correct MA hash?

display the individual hashes, CV, MA hash
using hashes + CV, compute the expected MA hash
compare observed against expected

Query Processing So Far 2/60

Steps in processing an SQL statement

parse, map to relation algebra (RA) expression
transform to more efficient RA expression
instantiate RA operators to DBMS operations
execute DBMS operations (aka query plan)

Cost-based optimisation:

generate possible query plans (via heuristics)
estimate cost of each plan (sum costs of operations)
choose the lowest-cost plan (... and choose quickly)

Estimating Selection Result Size 3/60

Analysis relies on operation and data distribution:

E.g. select * from R where a = k;

Case 1: uniq(R.a) ⇒ 0 or 1 result

Case 2: rR tuples && size(dom(R.a)) = n ⇒ rR / n results

E.g. select * from R where a < k;

Case 1: k ≤ min(R.a) ⇒ 0 results

Case 2: k > max(R.a) ⇒ ≅ rR results

Case 3: size(dom(R.a)) = n ⇒ ? min(R.a) ... k ... max(R.a) ?

Estimating Join Result Size 4/60

17/05/2016, 10:23 AMWeek 12

Page 2 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

Analysis relies on semantic knowledge about data/relations.

Consider equijoin on common attr: R ⋈a S

Case 1: values(R.a) ∩ values(S.a) = {} ⇒ size(R ⋈a S) = 0

Case 2: uniq(R.a) and uniq(S.a) ⇒ size(R ⋈a S) ≤ min(|R|, |S|)

Case 3: pkey(R.a) and fkey(S.a) ⇒ size(R ⋈a S) ≤ |S|

Exercise 1: Join Size Estimation 5/60

How many tuples are in the output from:

1. select * from R, S where R.s = S.id
where S.id is a primary key and R.s is a foreign key referencing S.id

2. select * from R, S where R.s <> S.id
where S.id is a primary key and R.s is a foreign key referencing S.id

3. select * from R, S where R.x = S.y
where R.x and S.y have no connection except that dom(R.x)=dom(S.y)

Under what conditions will the first query have maximum size?

Cost Estimation: Postscript 6/60

Inaccurate cost estimation can lead to poor evaluation plans.

Above methods can (sometimes) give inaccurate estimates.

To get more accurate cost estimates:

more time ... complex computation of selectivity
more space ... storage for histograms of data values

Either way, optimisation process costs more (more than query?)

Trade-off between optimiser performance and query performance.

PostgreSQL Query Optimiser

Overview of QOpt Process 8/60

Input: tree of Query nodes returned by parser

Output: tree of Plan nodes used by query executor

wrapped in a PlannedStmt node containing state info

Intermediate data structures are trees of Path nodes

a path tree represents one evaluation order for a query

All Node types are defined in include/nodes/*.h

17/05/2016, 10:23 AMWeek 12

Page 3 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

... Overview of QOpt Process 9/60

QOpt Data Structures 10/60

Generic Path node structure:

typedef struct Path
{
 NodeTag type; /* scan/join/... */
 NodeTag pathtype; /* specific method */
 RelOptInfo *parent; /* output relation */
 /* estimated execution costs for path */
 Cost startup_cost; /* setup cost */
 Cost total_cost; /* total cost */
 List *pathkeys; /* sort order */
} Path;

... QOpt Data Structures 11/60

Specialised Path nodes:

typedef struct IndexPath
{
 Path path;
 List *indexinfo; /* physical info on indexes */
 List *indexclauses; /* index select conditions */
 ...
 double rows; /* estimated #results */
} IndexPath;

typedef struct JoinPath
{
 Path path;
 JoinType jointype; /* inner/outer/semi/anti */
 Path *outerpath; /* outer part of the join */
 Path *innerpath; /* inner part of the join */
 List *restrictinfo; /* where/join conds */
} JoinPath;

Query Optimisation Process 12/60

Query optimisation proceeds in two stages (after parsing)...

Rewriting:

uses PostgreSQL's rule system

17/05/2016, 10:23 AMWeek 12

Page 4 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

query tree is expanded to include e.g. view definitions

Planning and optimisation:

using cost-based analysis of generated paths
via one of two different path generators
chooses least-cost path from all those considered

Then produces a Plan tree from the selected path.

Top-down Trace of QOpt 13/60

Top-level of query execution: backend/tcop/postgres.c

exec_simple_query(const char *query_string)
{
 // lots of setting up ... including starting xact
 parsetree_list = pg_parse_query(query_string);
 foreach(parsetree_item, parsetree_list) {
 // Query optimisation
 querytree_list = pg_analyze_and_rewrite(parsetree,...);
 plantree_list = pg_plan_queries(querytree_list,...);
 // Query execution
 portal = CreatePortal(...plantree_list...);
 PortalRun(portal,...);
 }
 // lots of cleaning up ... including close xact
}

Assumes that we are dealing with multiple queries (i.e. SQL statements)

... Top-down Trace of QOpt 14/60

pg_analyze_and_rewrite()

take a parse tree (from SQL parser)
transforms Parse tree into Query tree (SQL → RA)
applies rewriting rules (e.g. views)
returns a list of Query trees

Code in: backend/tcop/postgres.c

... Top-down Trace of QOpt 15/60

pg_plan_queries()

takes a list of parsed/re-written queries
plans each one via planner()

which invokes subquery_planner() on each query
returns a list of query plans

Code in: backend/optimizer/plan/planner.c

... Top-down Trace of QOpt 16/60

17/05/2016, 10:23 AMWeek 12

Page 5 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

subquery_planner()

performs algebraic transformations/simplifications, e.g.
simplifies conditions in where clauses
converts sub-queries in where to top-level join
moves having clauses with no aggregate into where
flattens sub-queries in join list
simplifies join tree (e.g. removes redundant terms), etc.

sets up canonical version of query for plan generation
invokes grouping_planner() to produce best path

Code in: backend/optimizer/plan/planner.c

... Top-down Trace of QOpt 17/60

grouping_planner() produces plan for one SQL statement

preprocesses target list for INSERT/UPDATE
handles "planning" for extended-RA SQL constructs:

set operations: UNION/INTERSECT/EXCEPT
GROUP BY, HAVING, aggregations
ORDER BY, DISTINCT, LIMIT

invokes query_planner() for select/join trees

Code in: backend/optimizer/plan/planmain.c

... Top-down Trace of QOpt 18/60

query_planner() produces plan for a select/join tree

make list of tables used in query
split where qualifiers ("quals") into

restrictions (e.g. r.a=1) ... for selections
joins (e.g. s.id=r.s) ... for joins

search for quals to enable merge/hash joins

invoke make_one_rel() to find best path/plan

Code in: backend/optimizer/plan/planmain.c

... Top-down Trace of QOpt 19/60

make_one_rel() generates possible plans, selects best

generate scan and index paths for base tables
using of restrictions list generated above

generate access paths for the entire join tree
recursive process, controlled by make_rel_from_joinlist()

returns a single "relation", representing result set

Code in: backend/optimizer/path/allpaths.c

Join-tree Generation 20/60

make_rel_from_joinlist() arranges path generation

17/05/2016, 10:23 AMWeek 12

Page 6 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

switches between two possible path tree generators
path tree generators finally return best cost path

Standard path tree generator (standard_join_search()):

"exhaustively" generates join trees (a la System R)
starts with 2-way joins, finds best combination
then adds extra table to give 3-table join, etc.

Code in: backend/optimizer/path/{allpaths.c,joinrels.c}

... Join-tree Generation 21/60

Genetic query optimiser (geqo):

uses genetic algorithm (GA) to generate path trees
based on GA designed for "travelling salesman" problem
goals of this approach:

find near-optimal solution
examine far less than entire search space

used as path generator in PostgreSQL for large joins
threshold determined by geqo_threshold config param

Code in: backend/optimizer/geqo/*.c

Query Execution

Query Execution 23/60

Query execution: applies evaluation plan → result tuples

... Query Execution 24/60

Example of query translation:

select s.name, s.id, e.course, e.mark
from Student s, Enrolment e
where e.student = s.id and e.semester = '05s2';

maps to

17/05/2016, 10:23 AMWeek 12

Page 7 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

πname,id,course,mark(Stu ⋈e.student=s.id (σsemester=05s2Enr))

maps to

Temp1 = BtreeSelect[semester=05s2](Enr)
Temp2 = HashJoin[e.student=s.id](Stu,Temp1)
Result = Project[name,id,course,mark](Temp2)

... Query Execution 25/60

A query execution plan:

consists of a collection of RelOps
executing together to produce a set of result tuples

Results may be passed from one operator to the next:

materialization ... writing results to disk and reading them back
pipelining ... generating and passing via memory buffers

Materialization 26/60

Steps in materialization between two operators

first operator reads input(s) and writes results to disk
next operator treats tuples on disk as its input
in essence, the Temp tables are produced as real tables

Advantage:

intermediate results can be placed in a file structure
(which can be chosen to speed up execution of subsequent operators)

Disadvantage:

requires disk space/writes for intermediate results
requires disk access to read intermediate results

Pipelining 27/60

How pipelining is organised between two operators:

blocks execute "concurrently" as producer/consumer pairs
first operator acts as producer; second as consumer
structured as interacting iterators (open; while(next); close)

Advantage:

no requirement for disk access (results passed via memory buffers)

Disadvantage:

higher-level operators access inputs via linear scan, or
requires sufficient memory buffers to hold all outputs

Iterators (reminder) 28/60

17/05/2016, 10:23 AMWeek 12

Page 8 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

Iterators provide a "stream" of results:

iter = startScan(params)
set up data structures for iterator (create state, open files, ...)
params are specific to operator (e.g. reln, condition, #buffers, ...)

tuple = nextTuple(iter)
get the next tuple in the iteration; return null if no more

endScan(iter)
clean up data structures for iterator

Other possible operations: reset to specific point, restart, ...

Pipelining Example 29/60

Consider the query:

select s.id, e.course, e.mark
from Student s, Enrolment e
where e.student = s.id and
 e.semester = '05s2' and s.name = 'John';

which maps to the RA expression

Proj[id,course,mark](Join[student=id](Sel[05s2](Enr),Sel[John](Stu)))

which could represented by the RA expression tree

... Pipelining Example 30/60

Modelled as communication between RA tree nodes:

Note: likely that projection is combined with join in real DBMSs.

... Pipelining Example 31/60

This query might be executed as

17/05/2016, 10:23 AMWeek 12

Page 9 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

System:
 iter0 = startScan(Result)
 while (Tup = nextTuple(iter0)) { display Tup }
 endScan(iter0)
Result:
 iter1 = startScan(Join)
 while (T = nextTuple(iter1))
 { T' = project(T); return T' }
 endScan(iter1)
Sel1:
 iter4 = startScan(Btree(Enrolment,'semester=05s2'))
 while (A = nextTuple(iter4)) { return A }
 endScan(iter4)
...

... Pipelining Example 32/60

...
Join: -- nested-loop join
 iter2 = startScan(Sel1)
 while (R = nextTuple(iter2) {
 iter3 = startScan(Sel2)
 while (S = nextTuple(iter3))
 { if (matches(R,S) return (RS) }
 endScan(iter3) // better to reset(iter3)
 }
 endScan(iter2)
Sel2:
 iter5 = startScan(Btree(Student,'name=John'))
 while (B = nextTuple(iter5)) { return B }
 endScan(iter5)

Disk Accesses 33/60

Pipelining cannot avoid all disk accesses.

Some operations use multiple passes (e.g. merge-sort, hash-join).

data is written by one pass, read by subsequent passes

Thus ...

within an operation, disk reads/writes are possible
between operations, no disk reads/writes are needed

PostgreSQL Query Execution

PostgreSQL Query Execution 35/60

Defs: src/include/executor and src/include/nodes

Code: src/backend/executor

PostgreSQL uses pipelining ...

query plan is a tree of Plan nodes

17/05/2016, 10:23 AMWeek 12

Page 10 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

each type of node implements one kind of RA operation
(node implements specific access method via iterator interface)
node types e.g. Scan, Group, Indexscan, Sort, HashJoin
execution is managed via a tree of PlanState nodes
(mirrors the structure of the tree of Plan nodes; holds execution state)

PostgreSQL Executor 36/60

Modules in src/backend/executor fall into two groups:

execXXX (e.g. execMain, execProcnode, execScan)

implement generic control of plan evaluation (execution)
provide overall plan execution and dispatch to node iterators

nodeXXX (e.g. nodeSeqscan, nodeNestloop, nodeGroup)

implement iterators for specific types of RA operators
typically contains ExecInitXXX, ExecXXX, ExecEndXXX

... PostgreSQL Executor 37/60

Much simplified view of PostgreSQL executor:

ExecutePlan(execState, planStateNode, ...) {
 process "before each statement" triggers
 for (;;) {
 tuple = ExecProcNode(planStateNode)
 if (no more tuples) return END
 check tuple validity // MVCC
 if (got a tuple) break
 }
 process "after each statement" triggers
 return tuple
}
...

... PostgreSQL Executor 38/60

Executor overview (cont):

...
ExecProcNode(node) {
 switch (nodeType(node)) {
 case SeqScan:
 result = ExecSeqScan(node); break;
 case NestLoop:
 result = ExecNestLoop(node); break;
 ...
 }
 return result;
}

Example PostgreSQL Execution 39/60

Consider the query:

17/05/2016, 10:23 AMWeek 12

Page 11 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

-- get manager's age and # employees in Shoe department
select e.age, d.nemps
from Departments d, Employees e
where e.name = d.manager and d.name ='Shoe'

and its execution plan tree

... Example PostgreSQL Execution 40/60

The execution plan tree

contains three nodes:

NestedLoop with join condition (Outer.manager = Inner.name)
IndexScan on Departments with selection (name = 'Shoe')
SeqScan on Employees

... Example PostgreSQL Execution 41/60

Initially InitPlan() invokes ExecInitNode() on plan tree root.

ExecInitNode() sees a NestedLoop node ...
 so dispatches to ExecInitNestLoop() to set up iterator
 then invokes ExecInitNode() on left and right sub-plans
 in left subPlan, ExecInitNode() sees an IndexScan node
 so dispatches to ExecInitIndexScan() to set up iterator
 in right sub-plan, ExecInitNode() sees a SeqScan node
 so dispatches to ExecInitSeqScan() to set up iterator

Result: a plan state tree with same structure as plan tree.

... Example PostgreSQL Execution 42/60

Execution: ExecutePlan() repeatedly invokes ExecProcNode().

ExecProcNode() sees a NestedLoop node ...
 so dispatches to ExecNestedLoop() to get next tuple
 which invokes ExecProcNode() on its sub-plans
 in left sub-plan, ExecProcNode() sees an IndexScan node
 so dispatches to ExecIndexScan() to get next tuple
 if no more tuples, return END
 for this tuple, invoke ExecProcNode() on right sub-plan
 ExecProcNode() sees a SeqScan node
 so dispatches to ExecSeqScan() to get next tuple
 check for match and return joined tuples if found

17/05/2016, 10:23 AMWeek 12

Page 12 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

 continue scan until end
 reset right sub-plan iterator

Result: stream of result tuples returned via ExecutePlan()

Query Performance

Performance Tuning 44/60

How to make a database perform "better"?

Good performance may involve any/all of:

making applications using the DB run faster
lowering response time of queries/transactions
improving overall transaction throughput

Remembering that, to some extent ...

the query optimiser removes choices from DB developers
by making its own decision on the optimal execution plan

... Performance Tuning 45/60

Tuning requires us to consider the following:

which queries and transactions will be used?
 (e.g. check balance for payment, display recent transaction history)
how frequently does each query/transaction occur?
 (e.g. 90% withdrawals; 10% deposits; 50% balance check)
are there time constraints on queries/transactions?
 (e.g. EFTPOS payments must be approved within 7 seconds)
are there uniqueness constraints on any attributes?
 (define indexes on attributes to speed up insertion uniqueness check)
how frequently do updates occur?
 (indexes slow down updates, because must update table and index)

... Performance Tuning 46/60

Performance can be considered at two times:

during schema design
typically towards the end of schema design process
requires schema transformations such as denormalisation

outside schema design
typically after application has been deployed/used
requires adding/modifying data structures such as indexes

Difficult to predict what query optimiser will do, so ...

implement queries using methods which should be efficient
observe execution behaviour and modify query accordingly

PostgreSQL Query Tuning 47/60

17/05/2016, 10:23 AMWeek 12

Page 13 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

PostgreSQL provides the explain statement to

give a representation of the query execution plan
with information that may help to tune query performance

Usage:

EXPLAIN [ANALYZE] Query

Without ANALYZE, EXPLAIN shows plan with estimated costs.

With ANALYZE, EXPLAIN executes query and prints real costs.

Note that runtimes may show considerable variation due to buffering.

EXPLAIN Examples 48/60

Example: Select on non-indexed attribute

uni=# explain
uni=# select * from Students where stype='local';
 QUERY PLAN
--
 Seq Scan on students
 (cost=0.00..556.10 rows=20073 width=9)
 Filter: ((stype)::text = 'local'::text)

uni=# explain analyze
uni=# select * from Students where stype='local';
 QUERY PLAN
--
 Seq Scan on students
 (cost=0.00..556.10 rows=20073 width=9)
 (actual time=0.027..4.529 rows=20048 loops=1)
 Filter: ((stype)::text = 'local'::text)
 Rows Removed by Filter: 11000
 Total runtime: 5.4 ms

... EXPLAIN Examples 49/60

Example: Select on indexed attribute

uni=# explain analyze
uni-# select * from Students where id=100250;
 QUERY PLAN

 Index Scan using student_pkey on student
 (cost=0.00..8.27 rows=1 width=9)
 (actual time=0.049..0.049 rows=0 loops=1)
 Index Cond: (id = 100250)
 Total runtime: 0.1 ms

... EXPLAIN Examples 50/60

Example: Join on a primary key (indexed) attribute

uni=# explain
uni-# select s.sid,p.name
uni-# from Students s, People p where s.id=p.id;

17/05/2016, 10:23 AMWeek 12

Page 14 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

 QUERY PLAN
--
 Hash Join (cost=988.58..3112.76 rows=31048 width=19)
 (actual time=11.504..39.478 rows=31048 loops=1)
 Hash Cond: (p.id = s.id)
 -> Seq Scan on people p
 (cost=0.00..989.97 rows=36497 width=19)
 (actual time=0.016..8.312 rows=36497 loops=1)
 -> Hash (cost=478.48..478.48 rows=31048 width=4)
 (actual time=10.532..10.532 rows=31048 loops=1)
 Buckets: 4096 Batches: 2 Memory Usage: 548kB
 -> Seq Scan on students s
 (cost=0.00..478.48 rows=31048 width=4)
 (actual time=0.005..4.630 rows=31048 loops=1)
Total runtime: 41.0 ms

... EXPLAIN Examples 51/60

Example: Join on a non-indexed attribute

uni=# explain analyze
uni=# select s1.code, s2.code
uni-# from Subjects s1, Subjects s2
uni=# where s1.offeredBy=s2.offeredBy;
 QUERY PLAN

 Merge Join (cost=4449.13..121322.06 rows=7785262 width=18)
 (actual time=29.787..2377.707 rows=8039979 loops=1)
 Merge Cond: (s1.offeredby = s2.offeredby)
 -> Sort (cost=2224.57..2271.56 rows=18799 width=13)
 (actual time=14.251..18.703 rows=18570 loops=1)
 Sort Key: s1.offeredby
 Sort Method: external merge Disk: 472kB
 -> Seq Scan on subjects s1
 (cost=0.00..889.99 rows=18799 width=13)
 (actual time=0.005..4.542 rows=18799 loops=1)
 -> Sort (cost=2224.57..2271.56 rows=18799 width=13)
 (actual time=15.532..1100.396 rows=8039980 loops=1)
 Sort Key: s2.offeredby
 Sort Method: external sort Disk: 552kB
 -> Seq Scan on subjects s2
 (cost=0.00..889.99 rows=18799 width=13)
 (actual time=0.002..3.579 rows=18799 loops=1)
Total runtime: 2767.1 ms

Exercise 2: EXPLAIN examples 52/60

Using the following database ...

People(id, family, given, birthday, ...)
Courses(id, subject, term, ...)
Subjects(id, code, title, ...)
CourseEnrolments(student, course, grade, mark, ...)

create view EnrolmentCounts as
 select s.code, c.term, count(e.student) as nstudes
 from Courses c join Subjects s on c.subject=s.id
 join CourseEnrolments e on e.course = c.id
 group by s.code, c.term;

predict how each of the following queries will be executed ...

17/05/2016, 10:23 AMWeek 12

Page 15 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

Check your prediction using the EXPLAIN ANALYZE command.

1. select max(birthday) from People
2. select max(id) from People
3. select family from People order by family
4. select s.family from People s, CourseEnrolments e

where s.id=e.student and e.grade='FL'
5. select * from EnrolmentCounts where code='COMP9315';

Examine the effect of adding ORDER BY and DISTINCT.

Add indexes to improve the speed of slow queries.

Transaction Processing

Transaction Processing 55/60

Transaction: application-level operation requiring multiple DB operations

Data integrity is assured if transactions satisfy the following:

Atomicity

Either all operations of a tx appear in database or none do

Consistency

Execution of a tx in isolation preserves data consistency

Isolation

Each tx is "unaware" of other concurrent tx's

Durability

If a tx commits, its changes persist even after later system failure

... Transaction Processing 56/60

Where transaction processing fits in the DBMS:

Schedules 57/60

17/05/2016, 10:23 AMWeek 12

Page 16 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

A schedule gives the sequence of operations from ≥ 1 tx

Serial schedule for a set of tx's T1 .. Tn

all operations of Ti complete before Ti+1 begins

E.g. RT1(A) WT1(A) RT2(B) RT2(A) WT3(C) WT3(B)

Concurrent schedule for a set of tx's T1 .. Tn

operations from individual Ti's are interleaved

E.g. RT1(A) RT2(B) WT1(A) WT3(C) WT3(B) RT2(A)

Transaction Anomalies 58/60

What problems can occur with uncontrolled concurrent transactions?

The set of phenomena can be characterised broadly under:

dirty read:
reading data item currently in use by another tx
nonrepeateable read:
re-reading data item, since changed by another tx
phantom read:
re-reading result set, since changed by another tx

Example of Transaction Failure 59/60

Above examples assumed that all transactions commit.

Additional problems can arise when transactions abort.

Consider the following schedule where transaction T1 fails:

T1: R(X) W(X) A
T2: R(X) W(X) C

Abort will rollback the changes to X, but ...

Consider three places where rollback might occur:

T1: R(X) W(X) A [1] [2] [3]
T2: R(X) W(X) C

... Example of Transaction Failure 60/60

Abort / rollback scenarios:

T1: R(X) W(X) A [1] [2] [3]
T2: R(X) W(X) C

Case [1] is ok

all effects of T1 vanish; final effect is simply from T2

Case [2] is problematic

17/05/2016, 10:23 AMWeek 12

Page 17 of 17file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week11/notes.html

some of T1's effects persist, even though T1 aborted

Case [3] is also problematic

T2's effects are lost, even though T2 committed

Produced: 17 May 2016

