
24/05/2016, 8:39 PMWeek 12

Page 1 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

Week 12

Transaction Processing 1/66

Transaction (tx) = application-level atomic op, multiple DB ops

Concurrent transactions are

desirable, for improved performance
problematic, because of potential unwanted interactions

To ensure problem-free concurrent transactions:

Atomic ... whole effect of tx, or nothing
Consistent ... individual tx's are "correct" (wrt application)
Isolated ... each tx behaves as if no concurrency
Durable ... effects of committed tx's persist

... Transaction Processing 2/66

Transaction Isolation

Transaction Isolation 4/66

Simplest form of isolation: serial execution (T1 ; T2 ; T3 ; ...)

Problem: serial execution yields poor throughput.

Concurrency control schemes (CCSs) aim for "safe" concurrency

Abstract view of DBMS concurrency mechanisms:

24/05/2016, 8:39 PMWeek 12

Page 2 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

Serializability 5/66

Consider two schedules S1 and S2 produced by

executing the same set of transactions T1..Tn concurrently
but with a non-serial interleaving of R/W operations

S1 and S2 are equivalent if StateAfter(S1) = StateAfter(S2)

i.e. final state yielded by S1 is same as final state yielded by S2

S is a serializable schedule (for a set of concurrent tx's T1 ..Tn) if

S is equivalent to some serial schedule Ss of T1 ..Tn

Under these circumstances, consistency is guaranteed
(assuming no aborted transactions and no system failures)

... Serializability 6/66

Two formulations of serializability:

conflict serializibility
i.e. conflicting R/W operations occur in the "right order"
check via precedence graph; look for absence of cycles

view serializibility
i.e. read operations see the correct version of data
checked via VS conditions on likely equivalent schedules

View serializability is strictly weaker than conflict serializability.

Exercise 1: Serializability Checking 7/66

Is the following schedule view/conflict serializable?

T1: W(B) W(A)
T2: R(B) W(A)
T3: R(A) W(A)

Is the following schedule view/conflict serializable?

T1: W(B) W(A)
T2: R(B) W(A)
T3: R(A) W(A)

24/05/2016, 8:39 PMWeek 12

Page 3 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

Transaction Isolation Levels 8/66

SQL programmers' concurrency control mechanism ...

set transaction
 read only -- so weaker isolation may be ok
 read write -- suggests stronger isolation needed
isolation level
 -- weakest isolation, maximum concurrency
 read uncommitted
 read committed
 repeatable read
 serializable
 -- strongest isolation, minimum concurrency

Applies to current tx only; affects how scheduler treats this tx.

... Transaction Isolation Levels 9/66

Meaning of transaction isolation levels:

Isolation Dirty Nonrepeatable Phantom
Level Read Read Read

Read Possible Possible Possible
uncommitted

Read Not possible Possible Possible
committed

Repeatable Not possible Not possible Possible
read

Serializable Not possible Not possible Not possible

... Transaction Isolation Levels 10/66

For transaction isolation, PostgreSQL

provides syntax for all four levels
treats read uncommitted as read committed
repeatable read behaves like serializable
default level is read committed

Note: cannot implement read uncommitted because of MVCC

... Transaction Isolation Levels 11/66

A PostgreSQL tx consists of a sequence of SQL statements:

BEGIN S1; S2; ... Sn; COMMIT;

Isolation levels affect view of DB provided to each Si:

in read committed ...
each Si sees snapshot of DB at start of Si

in repeatable read and serializable ...

24/05/2016, 8:39 PMWeek 12

Page 4 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

each Si sees snapshot of DB at start of tx
serializable checks for extra conditions

Implementing Concurrency Control

Concurrency Control 13/66

Approaches to concurrency control:

Lock-based
Synchronise tx execution via locks on relevant part of DB.

Version-based (multi-version concurrency control)
Allow multiple consistent versions of the data to exist.
Each tx has access only to version existing at start of tx.

Validation-based (optimistic concurrency control)
Execute all tx's; check for validity problems on commit.

Timestamp-based
Organise tx execution via timestamps assigned to actions.

Lock-based Concurrency Control 14/66

Locks introduce additional mechanisms in DBMS:

The Lock Manager

manages the locks requested by the scheduler

... Lock-based Concurrency Control 15/66

Lock table entries contain:

object being locked (DB, table, tuple, field)
type of lock: read/shared, write/exclusive
FIFO queue of tx's requesting this lock
count of tx's currently holding lock (max 1 for write locks)

Lock and unlock operations must be atomic.

Lock upgrade:

if a tx holds a read lock, and it is the only tx holding that lock
then the lock can be converted into a write lock

... Lock-based Concurrency Control 16/66

24/05/2016, 8:39 PMWeek 12

Page 5 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

Synchronise access to shared data items via following rules:

before reading X, get read (shared) lock on X
before writing X, get write (exclusive) lock on X
a tx attempting to get a read lock on X is blocked if another tx already has write lock on X
a tx attempting to get an write lock on X is blocked if another tx has any kind of lock on X

These rules alone do not guarantee serializability.

... Lock-based Concurrency Control 17/66

Consider the following schedule, using locks:

T1(a): Lr(Y) R(Y) continued
T2(a): Lr(X) R(X) U(X) continued

T1(b): U(Y) Lw(X) W(X) U(X)
T2(b): Lw(Y)....W(Y) U(Y)

(where Lr = read-lock, Lw = write-lock, U = unlock)

Locks correctly ensure controlled access to X and Y.

Despite this, the schedule is not serializable. (Ex: prove this)

Two-Phase Locking 18/66

To guarantee serializability, we require an additional constraint:

in every tx, all lock requests precede all unlock requests

Each transaction is then structured as:

growing phase where locks are acquired
action phase where "real work" is done
shrinking phase where locks are released

Clearly, this reduces potential concurrency ...

Problems with Locking 19/66

Appropriate locking can guarantee correctness.

However, it also introduces potential undesirable effects:

Deadlock
No transactions can proceed; each waiting on lock held by another.

Starvation
One transaction is permanently "frozen out" of access to data.

Reduced performance
Locking introduces delays while waiting for locks to be released.

Deadlock 20/66

24/05/2016, 8:39 PMWeek 12

Page 6 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

Deadlock occurs when two transactions are waiting for a lock on an item held by the other.

Example:

T1: Lw(A) R(A) Lw(B)
T2: Lw(B) R(B) Lw(A)

How to deal with deadlock?

prevent it happening in the first place
let it happen, detect it, recover from it

... Deadlock 21/66

Handling deadlock involves forcing a transaction to "back off".

select process to "back off"
choose on basis of how far transaction has progressed, # locks held, ...

roll back the selected process
how far does this it need to be rolled back? (less roll-back is better)
worst-case scenario: abort one transaction

prevent starvation
need methods to ensure that same transaction isn't always chosen

... Deadlock 22/66

Methods for managing deadlock

timeout : set max time limit for each tx
waits-for graph : records Tj waiting on lock held by Tk

prevent deadlock by checking for new cycle ⇒ abort Ti
detect deadlock by periodic check for cycles ⇒ abort Ti

timestamps : use tx start times as basis for priority
scenario: Tj tries to get lock held by Tk ...
wait-die: if Tj < Tk, then Tj waits, else Tj rolls back
wound-wait: if Tj < Tk, then Tk rolls back, else Tj waits

... Deadlock 23/66

Properties of deadlock handling methods:

both wait-die and wound-wait are fair
wait-die tends to

roll back tx's that have done little work
but rolls back tx's more often

wound-wait tends to
roll back tx's that may have done significant work
but rolls back tx's less often

timestamps easier to implement than waits-for graph
waits-for minimises roll backs because of deadlock

Exercise 2: Deadlock Handling 24/66

Consider the following schedule on four transactions:

T1: R(A) W(C) W(D)

24/05/2016, 8:39 PMWeek 12

Page 7 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

T2: R(B) W(C)
T3: R(D) W(B)
T4: R(E) W(A)

Assume that: each R acquires a shared lock; each W uses an exclusive lock; two-phase locking is used.

Show how the wait-for graph for the locks evolves.

Show how any deadlocks might be resolved via this graph.

Optimistic Concurrency Control 25/66

Locking is a pessimistic approach to concurrency control:

limit concurrency to ensure that conflicts don't occur

Costs: lock management, deadlock handling, contention.

In scenarios where there are far more reads than writes ...

don't lock (allow arbitrary interleaving of operations)
check just before commit that no conflicts occurred
if problems, roll back conflicting transactions

... Optimistic Concurrency Control 26/66

Transactions have three distinct phases:

Reading: read from database, modify local copies of data
Validation: check for conflicts in updates
Writing: commit local copies of data to database

Timestamps are recorded at points noted:

... Optimistic Concurrency Control 27/66

Data structures needed for validation:

A ... set of txs that are reading data and computing results
V ... set of txs that have reached validation (not yet committed)
F ... set of txs that have finished (committed data to storage)
for each Ti, timestamps for when it reached A, V, F
R(Ti) set of all data items read by Ti
W(Ti) set of all data items to be written by Ti

Use the V timestamps as ordering for transactions

assume serial tx order based on ordering of V(Ti)'s

24/05/2016, 8:39 PMWeek 12

Page 8 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

... Optimistic Concurrency Control 28/66

Validation check for transaction T

for all transactions Ti ≠ T
if V(Ti) < A(T) < F(Ti), then check W(Ti) ∩ R(T) is empty
if V(Ti) < V(T) < F(Ti), then check W(Ti) ∩ W(T) is empty

If this check fails for any Ti, then T is rolled back.

Prevents: T reading dirty data, T overwriting Ti's changes

Problems: rolls back "complete" tx's, cost to maintain A,V,F sets

Multi-version Concurrency Control 29/66

Multi-version concurrency control (MVCC) aims to

retain benefits of locking, while getting more concurrency
by providing multiple (consistent) versions of data items

Achieves this by

readers access an "appropriate" version of each data item
writers make new versions of the data items they modify

Main difference between MVCC and standard locking:

read locks do not conflict with write locks ⇒
reading never blocks writing, writing never blocks reading

... Multi-version Concurrency Control 30/66

WTS = timestamp of last writer; RTS = timestamp of last reader

Chained tuple versions: tupoldest → tupolder → tupnewest

When a reader Ti is accessing the database

ignore any data item created after Ti started (WTS > TS(Ti))
use only newest version V satisfying WTS(V) < TS(Ti)

When a writer Tj attempts to change a data item

find newest version V satisfying WTS(V) < TS(Tj)
if RTS(V) ≤ TS(Tj), create new version of data item
if RTS(V) > TS(Tj), reject the write and abort Tj

... Multi-version Concurrency Control 31/66

Advantage of MVCC

locking needed for serializability considerably reduced

Disadvantages of MVCC

24/05/2016, 8:39 PMWeek 12

Page 9 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

visibility-check overhead (on every tuple read/write)
reading an item V causes an update of RTS(V)
storage overhead for extra versions of data items
overhead in removing out-of-date versions of data items

Despite apparent disadvantages, MVCC is very effective.

... Multi-version Concurrency Control 32/66

Removing old versions:

Vj and Vk are versions of same item
WTS(Vj) and WTS(Vk) precede TS(Ti) for all Ti
remove version with smaller WTS(Vx) value

When to make this check?

every time a new version of a data item is added?
periodically, with fast access to blocks of data

PostgreSQL uses the latter (vacuum).

Concurrency Control in PostgreSQL 33/66

PostgreSQL uses two styles of concurrency control:

multi-version concurrency control (MVCC)
(used in implementing SQL DML statements (e.g. select))
two-phase locking (2PL)
(used in implementing SQL DDL statements (e.g. create table))

From the SQL (PLpgSQL) level:

can let the lock/MVCC system handle concurrency
can handle it explicitly via LOCK statements

... Concurrency Control in PostgreSQL 34/66

PostgreSQL provides read committed and serializable isolation levels.

Using the serializable isolation level, a select:

sees only data committed before the transaction began
never sees changes made by concurrent transactions

Using the serializable isolation level, an update fails:

if it tries to modify an "active" data item
(active = affected by some other tx, either committed or uncommitted)

The transaction containing the update must then rollback and re-start.

... Concurrency Control in PostgreSQL 35/66

24/05/2016, 8:39 PMWeek 12

Page 10 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

Implementing MVCC in PostgreSQL requires:

a log file to maintain current status of each Ti
in every tuple:

xmin ID of the tx that created the tuple
xmax ID of the tx that replaced/deleted the tuple (if any)
xnew link to newer versions of tuple (if any)

for each transaction Ti :
a transaction ID (timestamp)
SnapshotData: list of active tx's when Ti started

... Concurrency Control in PostgreSQL 36/66

Rules for a tuple to be visible to Ti :

the xmin (creation transaction) value must
be committed in the log file
have started before Ti's start time
not be active at Ti's start time

the xmax (delete/replace transaction) value must
be blank or refer to an aborted tx, or
have started after Ti's start time, or
have been active at SnapshotData time

For details, see: utils/time/tqual.c

... Concurrency Control in PostgreSQL 37/66

Tx's always see a consistent version of the database.

But may not see the "current" version of the database.

E.g. T1 does select, then concurrent T2 deletes some of T1's selected tuples

This is OK unless tx's communicate outside the database system.

E.g. T1 counts tuples while T2 deletes then counts; then counts are compared

Use locks if application needs every tx to see same current version

LOCK TABLE locks an entire table
SELECT FOR UPDATE locks only the selected rows

Exercise 3: Locking in PostgreSQL 38/66

How could we solve this problem via locking?

create or replace function
 allocSeat(paxID int, fltID int, seat text)
 returns boolean
as $$
declare
 pid int;
begin
 select paxID into pid from SeatingAlloc
 where flightID = fltID and seatNum = seat;

24/05/2016, 8:39 PMWeek 12

Page 11 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

 if (pid is not null) then
 return false; -- someone else already has seat
 else
 update SeatingAlloc set pax = paxID
 where flightID = fltID and seatNum = seat;
 commit;
 return true;
 end if;
end;
$$ langauge plpgsql;

Implementing Atomicity/Durability

Atomicity/Durability 40/66

Reminder:

Transactions are atomic

if a tx commits, all of its changes occur in DB
if a tx aborts, none of its changes occur in DB

Transaction effects are durable

if a tx commits, its effects persist
(even in the event of subsequent (catastrophic) system failures)

Implementation of atomicity/durability is intertwined.

Durability 41/66

What kinds of "system failures" do we need to deal with?

single-bit inversion during transfer mem-to-disk
decay of storage medium on disk (some data changed)
failure of entire disk device (no longer accessible)
failure of DBMS processes (e.g. postgres crashes)
operating system crash, power failure to computer room
complete destruction of computer system running DBMS

The last requires off-site backup; all others should be locally recoverable.

... Durability 42/66

Consider following scenario:

24/05/2016, 8:39 PMWeek 12

Page 12 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

Desired behaviour after system restart:

all effects of T1, T2 persist
as if T3, T4 were aborted (no effects remain)

... Durability 43/66

Durabilty begins with a stable disk storage subsystem.

i.e. effects of putPage() and getPage() are consistent

We can prevent/minimise loss/corruption of data due to:

mem/disk transfer corruption: parity checking
sector failure: mark "bad" blocks
disk failure: RAID (levels 4,5,6)
destruction of computer system: off-site backups

Dealing with Transactions 44/66

The remaining "failure modes" that we need to consider:

failure of DBMS processes or operating system
failure of transactions (ABORT)

Standard technique for managing these:

keep a log of changes made to database
use this log to restore state in case of failures

Architecture for Atomicity/Durability 45/66

How does a DBMS provide for atomicity/durability?

Execution of Transactions 46/66

Transactions deal with three address spaces:

stored data on the disk (representing DB state)
data in memory buffers (where held for sharing)
data in their own local variables (where manipulated)

Each of these may hold a different "version" of a DB object.

24/05/2016, 8:39 PMWeek 12

Page 13 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

PostgreSQL processes share buffer pool ⇒ not much local data.

... Execution of Transactions 47/66

Operations available for data transfer:

INPUT(X) ... read page containing X into a buffer
READ(X,v) ... copy value of X from buffer to local var v
WRITE(X,v) ... copy value of local var v to X in buffer
OUTPUT(X) ... write buffer containing X to disk

READ/WRITE are issued by transaction.

INPUT/OUTPUT are issued by buffer manager (and log manager).

INPUT/OUTPUT correspond to getPage()/putPage() mentioned above

... Execution of Transactions 48/66

Example of transaction execution:

-- implements A = A*2; B = B+1;
BEGIN
READ(A,v); v = v*2; WRITE(A,v);
READ(B,v); v = v+1; WRITE(B,v);
COMMIT

READ accesses the buffer manager and may cause INPUT.

COMMIT needs to ensure that buffer contents go to disk.

... Execution of Transactions 49/66

States as the transaction executes:

t Action v Buf(A) Buf(B) Disk(A) Disk(B)

(0) BEGIN . . . 8 5
(1) READ(A,v) 8 8 . 8 5
(2) v = v*2 16 8 . 8 5
(3) WRITE(A,v) 16 16 . 8 5
(4) READ(B,v) 5 16 5 8 5
(5) v = v+1 6 16 5 8 5
(6) WRITE(B,v) 6 16 6 8 5
(7) OUTPUT(A) 6 16 6 16 5
(8) OUTPUT(B) 6 16 6 16 6

After tx completes, we must have either
Disk(A)=8, Disk(B)=5 or Disk(A)=16, Disk(B)=6

If system crashes before (8), may need to undo disk changes.
If system crashes after (8), may need to redo disk changes.

Transactions and Buffer Pool 50/66

Two issues arise w.r.t. buffers:

forcing ... OUTPUT buffer on each WRITE

24/05/2016, 8:39 PMWeek 12

Page 14 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

ensures durability; disk always consistent with buffer pool
poor performance; defeats purpose of having buffer pool

stealing ... replace buffers of uncommitted tx's
if we don't, poor throughput (tx's blocked on buffers)
if we do, seems to cause atomicity problems?

Ideally, we want stealing and not forcing.

... Transactions and Buffer Pool 51/66

Handling stealing:

page P, held by tx T, is output to disk and replaced
if T aborts, some of its changes are already "committed"
must log changed values in P at "steal-time"
use these to UNDO changes in case of failure of T

Handling no forcing:

consider: transaction T commits, then system crashes
but what if modified page P has not yet been output?
must log changed values in P as soon as they change
use these to support REDO to restore changes

Logging 52/66

Three "styles" of logging

undo ... removes changes by any uncommitted tx's
redo ... repeats changes by any committed tx's
undo/redo ... combines aspects of both

All approaches require:

a sequential file of log records
each log record describes a change to a data item
log records are written first
actual changes to data are written later

Known as write-ahead logging

Undo Logging 53/66

Simple form of logging which ensures atomicity.

Log file consists of a sequence of small records:

<START T> ... transaction T begins
<COMMIT T> ... transaction T completes successfully
<ABORT T> ... transaction T fails (no changes)
<T,X,v> ... transaction T changed value of X from v

Notes:

we refer to <T,X,v> generically as <UPDATE> log records
update log entry created for each WRITE (not OUTPUT)

24/05/2016, 8:39 PMWeek 12

Page 15 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

update log entry contains old value (new value is not recorded)

... Undo Logging 54/66

Data must be written to disk in the following order:

1. <START> transaction log record
2. <UPDATE> log records indicating changes
3. the changed data elements themselves
4. <COMMIT> log record

Note: sufficient to have <T,X,v> output before X, for each X

... Undo Logging 55/66

For the example transaction, we would get:

t Action v B(A) B(B) D(A) D(B) Log
--
(0) BEGIN . . . 8 5 <START T>
(1) READ(A,v) 8 8 . 8 5
(2) v = v*2 16 8 . 8 5
(3) WRITE(A,v) 16 16 . 8 5 <T,A,8>
(4) READ(B,v) 5 16 5 8 5
(5) v = v+1 6 16 5 8 5
(6) WRITE(B,v) 6 16 6 8 5 <T,B,5>
(7) FlushLog
(8) StartCommit
(9) OUTPUT(A) 6 16 6 16 5
(10) OUTPUT(B) 6 16 6 16 6
(11) EndCommit <COMMIT T>
(12) FlushLog

Note that T is not regarded as committed until (11).

... Undo Logging 56/66

Simplified view of recovery using UNDO logging:

committedTrans = abortedTrans = startedTrans = {}
for each log record from most recent to oldest {
 switch (log record) {
 <COMMIT T> : add T to committedTrans
 <ABORT T> : add T to abortedTrans
 <START T> : add T to startedTrans
 <T,X,v> : if (T in committedTrans)
 // don't undo committed changes
 else // roll-back changes
 { WRITE(X,v); OUTPUT(X) }
} }
for each T in startedTrans {
 if (T in committedTrans) ignore
 else if (T in abortedTrans) ignore
 else write <ABORT T> to log
}
flush log

24/05/2016, 8:39 PMWeek 12

Page 16 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

Checkpointing 57/66

Simple view of recovery implies reading entire log file.

Since log file grows without bound, this is infeasible.

Eventually we can delete "old" section of log.

i.e. where all prior transactions have committed

This point is called a checkpoint.

all of log prior to checkpoint can be ignored for recovery

... Checkpointing 58/66

Problem: many concurrent/overlapping transactions.

How to know that all have finished?

1. periodically, write log record <CHKPT (T1,..,Tk)>
(contains references to all active transactions ⇒ active tx table)

2. continue normal processing (e.g. new tx's can start)
3. when all of T1,..,Tk have completed,

write log record <ENDCHKPT> and flush log

Note: tx manager maintains chkpt and active tx information

... Checkpointing 59/66

Recovery: scan backwards through log file processing as before.

Determining where to stop depends on ...

whether we meet <ENDCHKPT> or <CHKPT...> first

If we encounter <ENDCHKPT> first:

we know that all incomplete tx's come after prev <CHKPT...>
thus, can stop backward scan when we reach <CHKPT...>

If we encounter <CHKPT (T1,..,Tk)> first:

crash occurred during the checkpoint period
any of T1,..,Tk that committed before crash are ok
for uncommitted tx's, need to continue backward scan

Redo Logging 60/66

Problem with UNDO logging:

all changed data must be output to disk before committing
conflicts with optimal use of the buffer pool

Alternative approach is redo logging:

allow changes to remain only in buffers after commit

24/05/2016, 8:39 PMWeek 12

Page 17 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

write records to indicate what changes are "pending"
after a crash, can apply changes during recovery

... Redo Logging 61/66

Requirement for redo logging: write-ahead rule.

Data must be written to disk as follows:

1. start transaction log record
2. update log records indicating changes
3. then commit log record (OUTPUT)
4. then OUTPUT changed data elements themselves

Note that update log records now contain <T,X,v'>,
where v' is the new value for X.

... Redo Logging 62/66

For the example transaction, we would get:

t Action v B(A) B(B) D(A) D(B) Log
--
(0) BEGIN . . . 8 5 <START T>
(1) READ(A,v) 8 8 . 8 5
(2) v = v*2 16 8 . 8 5
(3) WRITE(A,v) 16 16 . 8 5 <T,A,16>
(4) READ(B,v) 5 16 5 8 5
(5) v = v+1 6 16 5 8 5
(6) WRITE(B,v) 6 16 6 8 5 <T,B,6>
(7) COMMIT <COMMIT T>
(8) FlushLog
(9) OUTPUT(A) 6 16 6 16 5
(10) OUTPUT(B) 6 16 6 16 6

Note that T is regarded as committed as soon as (8) completes.

Undo/Redo Logging 63/66

UNDO logging and REDO logging are incompatible in

order of outputting <COMMIT T> and changed data
how data in buffers is handled during checkpoints

Undo/Redo logging combines aspects of both

requires new kind of update log record
<T,X,v,v'> gives both old and new values for X
removes incompatibilities between output orders

As for previous cases, requires write-ahead of log records.

Undo/redo loging is common in practice; Aries algorithm.

... Undo/Redo Logging 64/66

For the example transaction, we might get:

24/05/2016, 8:39 PMWeek 12

Page 18 of 18file:///Users/jas/srvr/apps/cs9315/16s1/lectures/week12/notes.html

t Action v B(A) B(B) D(A) D(B) Log
--
(0) BEGIN . . . 8 5 <START T>
(1) READ(A,v) 8 8 . 8 5
(2) v = v*2 16 8 . 8 5
(3) WRITE(A,v) 16 16 . 8 5 <T,A,8,16>
(4) READ(B,v) 5 16 5 8 5
(5) v = v+1 6 16 5 8 5
(6) WRITE(B,v) 6 16 6 8 5 <T,B,5,6>
(7) FlushLog
(8) StartCommit
(9) OUTPUT(A) 6 16 6 16 5
(10) <COMMIT T>
(11) OUTPUT(B) 6 16 6 16 6

Note that T is regarded as committed as soon as (10) completes.

Recovery in PostgreSQL 65/66

PostgreSQL uses write-ahead undo/redo style logging.

It also uses multi-version concurrency control, which

tags each record with a tx and update timestamp

MVCC simplifies some aspects of undo/redo, e.g.

some info required by logging is already held in each tuple
no need to undo effects of aborted tx's; use old version

... Recovery in PostgreSQL 66/66

Transaction/logging code is distributed throughout backend.

Core transaction code is in src/backend/access/transam.

Transaction/logging data is written to files in PGDATA/pg_xlog

a number of very large files containing log records
old files are removed once all txs noted there are completed
new files added when existing files reach their capacity (16MB)
number of tx log files varies depending on tx activity

Produced: 24 May 2016

