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Pre-lecture exercise: Where is Felix? (1)

|
* You have two boxes: Box 1 and Box 2, as well as a cat called Felix

* The two boxes are connected by a tunnel

* Felix likes to hide inside these boxes and travels between them using the
tunnel.

* Felix is a very fast cat so the probability of finding him in the tunnel is zero
* You know Felix is in one of the boxes but you don’'t know which one
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Pre-lecture exercise: Where is Felix? (2)

|
* Notation:

* Prob[A] = probability that event A occurs
* Prob[A | B] = probability that event A occurs given event B

* You do know
* Felixis in one of the boxes at times 0 and 1
* Prob[ Felixis in Box 1 attime 0] = 0.3
* Prob][ Felix will be in Box 2 attime 1| Felixis in Box 1 at time 0] = 0.4
* Prob[ Felix will be in Box 1 attime 1| Felix is in Box 2 at time 0] = 0.2

e Calculate
* Prob[ Felixis in Box 1 attime 1]
* Prob[ Felixis in Box 2 at time 1]
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Week 1:

I
* Modelling a computer system as a network of queues

* Example: Open queueing network consisting of two
queues

database server

------------------------------------------------------------------

CPU 1 completing
. transactions

arriving .
transactions

-------------------------------------------------------------------
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Week 2:

|
e Operational analysis

* Measure #completed jobs, busy time etc
* Operational quantities: utilisation, response time, throughput etc.
* Operational laws relate the operational quantities

* Bottleneck analysis
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Little’s Law

|
* Applicable to any “box” that contains some queues or servers

* Mean number of jobs in the “box™ =
Mean response time x Throughput

* We will use Little’s Law in this lecture to derive the mean response time
* We first compute the mean number of jobs in the “box” and throughput

(O

O
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This week (1)

Arrivals ——— O —>  Departures

* Open, single server queues and

* How to find:
* Waiting time
* Response time
* Mean queue length etc.

* The technique to find waiting time etc. is called Queueing
Theory
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This week (2)

I
Departures

4®__> * Open, multi-server queue
* How to find:
( ) * Waiting time

* Response time
* Mean queue length etc.

Arrivals

m servers

51,2016 COMP9334 8



What will you be able to do with the results?

Configuration 1: — |C> '
\

processing speed=mp

Configuration 2: Configuration 3:

Arrivals ‘@‘* / i @"

Arrivals

m servers of Split arrivas .
speed p into m queues

m servers of

speed p

Which configuration has the

- best response time?
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Be patient

* We will show how we can obtain the response time
* |t takes a number of steps to obtain the answer

* |t takes time to stand in a queue, it also takes time to derive
results in queuing theory!
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Single Server Queue: Terminology

I }\U > O_»

—w ] S

Time spent waiting

J T=W+3S ]

Response Time T
= Waiting time W + Service time S

Note: We use T for response time because this is the notation in
many queueing theory books. For a similar reason, we will use
o for utilisation rather than U.
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Single server system

* In order to determine the response time, you need to know
* The inter-arrival time probability distribution
* The service time probability distribution

 Possible distributions

e Deterministic
e Constantinter-arrival time
e Constant service time

* Exponential distribution
* We will focus on exponential distribution
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Exponential inter-arrival with rate A

///7/ Arrivals

A A A A A

[
P

A
A
4
\ 4
4
A
4

Inter-arrival time

We assume that successive arrivals are independent

Probability that inter-arrival time is between x and x + 6x
= A exp(- AX) Ox
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Poisson distribution (1)

* The following are equivalent

* The inter-arrival time is independent and exponentially distributed
with parameter A

e The number of arrivals in an interval T is a Poisson distribution with
parameter A

(AT Fexp(—=\T)

Pr|k arrivals in a time interval T| = i
e Mean inter-arrivaltime =1/A

e Mean number of arrivalsintimeinterval T=AT

e Mean arrival rate = A

51,2016 COMP9334 14



Poisson distribution (2)

| . L . .
* Poisson distribution arises from a large number of

Independent sources

* An example from Week 2:
* N customers, each with a probability of p per unit time to make a request.
* This creates a Poisson arrival with A = Np

* Another interpretation of Poisson arrival:

* Consider a small time interval 6
* This means d" (for n >= 2) is negligible

* Probability[ noarrivalind]=1-A0

* Probability[ 1 arrivalind]= A0

* Probability [ 2 or more arrivalsind ]=0

* This interpretation can be derived from:

(AT)Fexp(—\T)
k! -
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Service time distribution

* Service time = the amount of processing time a job
requires from the server
* We assume that the service time distribution is exponential

with parameter u
* The probability that the service time is betweentand t + &t is:

pexp(—put) ot
* Here: u = service rate = 1/ mean service time

* Another interpretation of exponential service time:

 Consider a small time interval 6
* Probability [ a job will finish its service in next  seconds] =u &

S1,2016 COMP9334
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Sample queueing problems

|
e Consider a call centre

* Calls are arriving according to Poisson distribution with rate A

* The length of each call is exponentially distributed with parameter u
e Meanlength of a callis 1/ u (in, e.g. seconds)

Call centre:

m operators
If all operators are busy, the centre can put
at most n additional calls on hold.

If a call arrives when all operators and holding
slots are used, the call is rejected.

Arrivals

* Queueing theory will be able to answer these questions:
 What is the mean waiting time for a call?
 What is the probability that a call is rejected?

51,2016 COMP9334

17



Road map

* We will start by looking at a call centre with one operator
and no holding slot

* This may sound unrealistic but we want to show how we can solve
a typical queueing network problem

* After that we go into queues that are more complicated
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Call centre with 1 operator and no holding slots

I
* Let us see how we can solve the queuing problem for a

very simple call centre with 1 operator and no holding slots

* What happens to a call that arrives when the operator is
busy?

* What happens to a call that arrives when the operator is
idle?

* We are interested to find the probability that an arriving call
IS rejected.

Arrivals Call centre:

1 operator. No holding slot.
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Solution (1)

I
* There are two possibilities for the operator:

* Busyor
* l|dle
* Let

e State 0 = Operator is idle (i.e. #calls in the call centre =| ?
 State 1 = Operator is busy (i.e. #calls in the call centre = | 5

Py(t) = Prob. 0 call in the call centre at time ¢

Py (t) = Prob. 1 call in the call centre at time ¢
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‘ Solution (2)

|
We try to express Py(t + At) in terms of
P()(t) and P1 (t)

* No call at call centre at t + At can be caused by

Question: Why do we NOT have to consider the following possibility:
No customer at time t & 1 customer arrives in [t, t + At] &
the call finishes within [t, t + At].
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‘ Solution (3)
I

e Similarly, we can show that
Pi(t+ At) = Py(t)\At + P (t)(1 — pAt)

e |f welet At = 0, we have

dPo(t)
c:l)t = —FPo(H)A+ Pi(t)p
O _ pyor - Pty

51,2016 COMP9334
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‘ Solution (4)
I

* We can solve these equations to get

Y B (u+)t
Py(t) = H
o(?) A+ )\—I-ue

A wo
Pi(t) = | (n+A)t
() A+ /\—I—,ue

* This is too complicated, let us look at steady state solution

POZPO(OO):)\:L_M

A

Pu=Pioo) = 15—
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Solution (9)

* From the steady state solution, we have
* The probability that an arriving call is rejected
* = The probability that the operator is busy

o = P1: A
A+

e | et us check whether it makes sense

* For a constanty, if the arrival rate rate A increases, will the
probability that the operator is busy go up or down?

* Does the formula give the same prediction?
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‘ An alternative interpretation
I

* We have derived the following equation:

Po(t + At) = Py(t)(1 — AAL) + Py (1) uAt

 \Which can be rewritten as:
Pyt + At) — Py(t) =
* At steady state:

Rate of leaving state 0

Rate of entering state 0

51,2016 COMP9334
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Faster way to obtain steady state solution (1)

e Transition from State 0 to State 1
 Caused by an arrival, the rate is A

* Transition from State 1 to State 0
e Caused by a completed service, the rate is u

e State diagram representation
e Fach circle is a state
e [abel the arc between the states with transition rate

@Q@
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Faster way to obtain steady state solution (2)

* Steady state means
* rate of transition out of a state = Rate of transition into a state

* \We have for state O:

Ao = b

@
9
5
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Faster way to obtain steady state solution (3)

e \We can do the same for State 1:

* Steady state means
e Rate of transition into a state = rate of transition out of a state

* \We have for state 1:

Ao = phy

G
9
©
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Faster way to obtain steady state solution (4)

|
* We have one equation )‘PO — ,uPl

* We have 2 unknowns and we need one more equation.
e Since we must be either one of the two states:

Po+ P =1

* Solving these two equations, we get the same steady state solution as
before

n A
— P, —
A+ p A+

Py
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Summary

e Solving a queueing problem is not simple
* |tis harder to find how a queue evolves with time

* |tis simpler to find how a queue behaves at steady state

* Procedure:
Draw a diagram with the states
Add arcs between states with transition rates

Derive flow balance equation for each state, i.e.
* Rate of entering a state = Rate of leaving a state

Solve the equation for steady state probability
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Let us have a look at our call centre problem again

|
e Consider a call centre

* Calls are arriving according to Poisson distribution with rate A

* The length of each call is exponentially distributed with parameter u
* Meanlength of a callis 1/ u

Call centre:

m operators
If all operators are busy, the centre can put
at most n additional calls on hold.

If a call arrives when all operators and holding
slots are used, the call is rejected.

Arrivals

* We solve the problemform=7and n=0
* We call this a M/M/1/1 queue (explanation on the next page)
* How about other values of m and n
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Kendall’'s notation

* To represent different types of queues, queueing theorists
use the Kendall's notation

* The call centre example on the previous page can be
represented as:

M/M/s(/B)
Inter-arrival Service time Buffter Positions
distribution distribution (wait room)
IS Markovian is Markovian

. SO _ Number of servers
I.e. Exponential  j ¢ exponential

The call centre example on the last page is a M/M/m/(m+n) queue
If n = «, we simply write M/M/m
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M/M/1 queue
IExponential O
Inter-arrivals (A)

Exponential

Infinite buffer One server

* Consider a call centre analogy
e Calls are arriving according to Poisson distribution with rate 4

* The length of each call is exponentially distributed with parameter u
* Meanlength ofacallis 1/ u

Call centre with 7 operator

Arrivals If the operator is busy, the centre will put

> | the call on hold.

A customer will wait until his call is answered.

* Queueing theory will be able to answer these questions:
* What is the mean waiting time for a call?
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Solving M/M/1 queue (1)

I
* We will solve for the steady state response

* Define the states of the queue
e State 0 = There is zero job in the system (= The serveris idle)

» State 1 = Thereis 1 job in the system (= 1 job at the server, no job
queueing)

e State 2 = There are 2 jobs in the system (= 1 job at the server, 1 job
queueing)

» State k = There are k jobs in the system (= 1 job at the server, k-7 job
queueing)

* The state transition diagram

7L/\ A A A
ojol§cyclc ol

A
It W W
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‘ Solving M/M/1 queue (2)
I

P, = Prob. k jobs in system

AN A
AV VAV AN
ol ol§ol§ioRc 9ol
........... )\ PO: ,uplu 1 U u
=>P1—3P0
1
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AP = pbs
A A\ 2
:>P2:—P1 :>P2:(—> PO
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‘ Solving M/M/1 queue (4)

H 2 p p
/\PQ:,ng
3
A A
:>P3 —P2 :>P3:(—> P()
M H



Solving M/M/1 queue (5)

k
In general Pk: p— <é> PO
U

Letp:é
[

We have Pk — kaO

51,2016 COMP9334
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‘ Solving M/M/1 queue (6)
I

with P, — pk PO and
Ph+ P +FP+ P+ ...=1
= (1+p+p*+.. )P =1

. o = utilisation
:>P0:1—,01f,0<1 = Prob server is busy
=1- Po
k = 1- Prob server is idle

= P, = (1—p)p
Since pzé ,,0<].:>)\<,LL
[

Arrival rate < service rate
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‘ Solving M/M/1 queue (7)

with P = (1 — p)pk

This is the probability that there are k jobs in the system.

To find the response time, we will make use of Little’s law.

First we need to find the mean number of customers =

Y kPe =) k(1—p)p*
k=0 k=0

P
1 —0p

51,2016 COMP9334
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Solving M/M/1 queue (8)

Little’s law:
mean number of customers = throughput x response time

Throughput is A (why?)

1
Response time 1" = £ =

A1—=p) p—A
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Solving M/M/1 queue (9)

What is the mean waiting time at the queue?

Mean waiting time = mean response time - mean service time

We know mean response time (from last slide)

Mean service timeis=1/k

51,2016 COMP9334
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‘Using the service time parameter (1/u = 15ms) in the

| . . .
example, let us see how response time T varies with A

1
T =
u(l — p) Observation:
Response time
Increases

sharply when
0 gets close
to 1

Infinite queue
assumption

means p — 1,
T—o0
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Multi-server qgueues M/M/m

All arrivals go into one
Exponential queue.
Inter-arrivals (A)

Exponential Customers can be served

Service time (W) _@ by any one of the m
servers.

When a customer arrives
* If all servers are busy, it
will join the queue

* Otherwise, it will be
served by one of the
available servers

Infinite buffer

m servers
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A call centre analogy of M/M/m queue

e Consider a call centre analogy
* Calls are arriving according to Poisson distribution with rate A

* The length of each call is exponentially distributed with parameter u
* Meanlength of acallis 1/ u

Call centre with m operators
Arrivals If all m operators are busy, the centre will put

the call on hold.
A customer will wait until his call is answered.
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‘ State transition for M/M/m
|

@ @f\@

Qo 300

51,2016 COMP9334
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| M/M/m

* Following the same method, we have mean response time T is

n_ Clpm) 1

mu(l—p)  p

A

where P = ——

mip

(mp?m

C(pﬂ m) — m_lmm k m o)™
(1—p) k=0 (kﬁ) | (nz?
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Multi-server queues M/M/m/m with no waiting room

An arrival can be served
by any one of the m
servers.

Exponential
Inter-arrivals (A)

Exponential

Service time (W) _@ When a customer arrives
* If all servers are busy, it

will depart from the
system
No waiting

Room or
No buffer

* Otherwise, it will be
served by one of the
available servers

m servers
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A call centre analogy of M/M/m/m queue

e Consider a call centre analogy
* Calls are arriving according to Poisson distribution with rate A

* The length of each call is exponentially distributed with parameter u
* Meanlength of acallis 1/ u

Call centre with m operators
Arrivals If all m operators are busy, the call is dropped.
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‘ State transition for M/M/m/m

@QG/\@“@ 9o

2, 3u mp

(m-1)u

Probability that an arrival is blocked
= Probability that there are m customers in the system

me

£ A

m! —

Pm — pk where p = "
5 k=0 k!

“Erlang B formula”
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Poisson arrivals see time averages (PASTA)

I
* P, = Probability that there are n jobs in the system

* A, = Probability that an arriving customer finds n jobs in the
system

* If the arrival process is Poisson, then A, = P,

* Proof: Need to show the following two expressions are
equal.

A, = tlim éir% Prob [ n jobs in the system at time ¢ | an arrival occurs in (¢,t + §)]
— 00 00—

P,, = lim Prob | n jobs in the system at time ¢]

t— 00
* Key step in the proof, Poisson arrival means

Prob [ an arrival occurs in (¢, + §) | n jobs in the system at time ¢ |

= Prob [ an arrival occurs in (t,t 4+ 9) |

* To be completed in class
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What configuration has the best response time?

Configuration 1: —

O.—

processing speed=mp

Configuration 2:

0
Arrivals

m servers of

speed p

Try out the tutorial question!

Configuration 3:

Arrivals

Split arrivas

—®-

. >
into m queues

m servers of
speed p
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References

* Recommended reading

Queues with Poisson arrival are discussed in
Bertsekas and Gallager, Data Networks, Sections 3.3 to 3.4.3

Note: | derived the formulas here using continuous Markov chain
but Bertsekas and Gallager used discrete Markov chain
Mor Harchal-Balter. Chapters 13 and 14

Poisson arrival sees time averages (PASTA)

 See R.W. Wolff, “Poisson Arrivals See Time Averages”, Operational
Research, Vol 30, No 2, pp.223-231

* (Accessible within UNSW) www.jstor.org/stable/170165
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