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COMP9334
Capacity Planning for Computer Systems 
and Networks

Week 3: Queues with Poisson arrivals



Pre-lecture exercise: Where is Felix?  (1) 

• You have two boxes: Box 1 and Box 2, as well as a cat called Felix 
• The two boxes are connected by a tunnel 
• Felix likes to hide inside these boxes and travels between them using the 

tunnel. 
• Felix is a very fast cat so the probability of finding him in the tunnel is zero
• You know Felix is in one of the boxes but you don’t know which one 
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Pre-lecture exercise: Where is Felix?  (2) 

• Notation: 
• Prob[A] = probability that event A occurs 
• Prob[A | B] = probability that event A occurs given event B 

• You do know
• Felix is in one of the boxes at times 0 and 1 
• Prob[ Felix is in Box 1 at time 0] = 0.3
• Prob[ Felix will be in Box 2 at time 1| Felix is in Box 1 at time 0] = 0.4
• Prob[ Felix will be in Box 1 at time 1| Felix is in Box 2 at time 0] = 0.2

• Calculate
• Prob[ Felix is in Box 1 at time 1]
• Prob[ Felix is in Box 2 at time 1]
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Week 1: 

• Modelling a computer system as a network of queues
• Example: Open queueing network consisting of two 

queuesOpen queueing network

External arrivals

Workload intensity specified by arrival rate

Unbounded number of customers in the system

In equilibrium, flow in = flow out
) throughput = arrival rate

Page 26
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Week 2: 

• Operational analysis
• Measure #completed jobs, busy time etc
• Operational quantities: utilisation, response time, throughput etc.
• Operational laws relate the operational quantities

• Bottleneck analysis 
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Little’s Law

• Applicable to any “box” that contains some queues or servers
• Mean number of jobs in the “box” = 

Mean response time x Throughput 
• We will use Little’s Law in this lecture to derive the mean response time

• We first compute the mean number of jobs in the “box” and throughput 
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This week (1)

• Open, single server queues and
• How to find: 

• Waiting time
• Response time
• Mean queue length etc. 

• The technique to find waiting time etc. is called Queueing 
Theory

Arrivals Departures
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This week (2)

• Open, multi-server queue 
• How to find: 

• Waiting time
• Response time
• Mean queue length etc. 

1

2

3

m

m servers

Arrivals

Departures
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What will you be able to do with the results? 

Configuration 1: 

processing speed = m p

1

mm servers of
speed p

Arrivals

Configuration 2: 

1

m
Split arrivals
into m queues
m servers of
speed p

Arrivals

Configuration 3: 

Which configuration has the
best response time?



S1,2016 COMP9334 10

Be patient

• We will show how we can obtain the response time
• It takes a number of steps to obtain the answer

• It takes time to stand in a queue, it also takes time to derive 
results in queuing theory! 
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Single Server Queue: Terminology 

Time spent waiting

Response Time T 
= Waiting time W + Service time S

λ

W S

T = W + S

Note: We use T for response time because this is the notation in
many queueing theory books. For a similar reason, we will use 
ρ for utilisation rather than U. 
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Single server system

• In order to determine the response time, you need to know
• The inter-arrival time probability distribution
• The service time probability distribution

• Possible distributions
• Deterministic 

• Constant inter-arrival time
• Constant service time

• Exponential distribution

• We will focus on exponential distribution
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Exponential inter-arrival with rate λ

Arrivals

Inter-arrival time

We assume that successive arrivals are independent

Probability that inter-arrival time is between x and x + δx
= λ exp(- λx) δx
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Poisson distribution (1)

• The following are equivalent
• The inter-arrival time is independent and exponentially distributed 

with parameter λ
• The number of arrivals in an interval T is a Poisson distribution with 

parameter λ

• Mean inter-arrival time = 1 / λ
• Mean number of arrivals in time interval T = λ T
• Mean arrival rate = λ
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Poisson distribution (2)
• Poisson distribution arises from a large number of 

independent sources
• An example from Week 2:

• N customers, each with a probability of p per unit time to make a request. 
• This creates a Poisson arrival with λ = Np

• Another interpretation of Poisson arrival:
• Consider a small time interval δ

• This means δn (for n >= 2) is negligible 
• Probability [ no arrival in δ ] = 1 - λ δ
• Probability [ 1 arrival in δ ] = λ δ
• Probability [ 2 or more arrivals in δ ] ≈ 0 

• This interpretation can be derived from:
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Service time distribution

• Service time = the amount of processing time a job 
requires from the server

• We assume that the service time distribution is exponential 
with parameter µ
• The probability that the service time is between t and t + δt is:

• Here: µ = service rate = 1 / mean service time 
• Another interpretation of exponential service time: 

• Consider a small time interval δ
• Probability [ a job will finish its service in next δ seconds ] = µ δ

δt
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Sample queueing problems

• Consider a call centre
• Calls are arriving according to Poisson distribution with rate λ
• The length of each call is exponentially distributed with parameter µ

• Mean length of a call is 1/ µ (in, e.g. seconds)

Arrivals m operators
If all operators are busy, the centre can put 
at most n additional calls on hold.
If a call arrives when all operators and holding 
slots are used, the call is rejected.

Call centre:

• Queueing theory will be able to answer these questions: 
• What is the mean waiting time for a call?
• What is the probability that a call is rejected? 
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Road map

• We will start by looking at a call centre with one operator 
and no holding slot
• This may sound unrealistic but we want to show how we can solve 

a typical queueing network problem
• After that we go into queues that are more complicated
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Call centre with 1 operator and no holding slots

• Let us see how we can solve the queuing problem for a 
very simple call centre with 1 operator and no holding slots

• What happens to a call that arrives when the operator is 
busy?
• The call is rejected

• What happens to a call that arrives when the operator is 
idle?
• The call is admitted without delay.

• We are interested to find the probability that an arriving call 
is rejected. 

Arrivals

1 operator. No holding slot.

Call centre:
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Solution (1)

• There are two possibilities for the operator: 
• Busy or
• Idle

• Let
• State 0 = Operator is idle (i.e. #calls in the call centre = 0)
• State 1 = Operator is busy (i.e. #calls in the call centre = 1)

?
?
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Solution (2)

• No call at call centre at t + Δt can be caused by
• No call at time t and no call arrives in [t, t + Δt]
• 1 call at time t and the call finishes in [t, t + Δt]

Question: Why do we NOT have to consider the following possibility: 
No customer at time t & 1 customer arrives in [t, t + Δt] & 
the call finishes within [t, t + Δt]. 
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Solution (3)

• Similarly, we can show that 

• If we let Δt è 0, we have
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Solution (4)

• We can solve these equations to get

• This is too complicated, let us look at steady state solution
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Solution (5)

• From the steady state solution, we have 
• The probability that an arriving call is rejected
• = The probability that the operator is busy 
• = 

• Let us check whether it makes sense
• For a constant µ, if the arrival rate rate λ increases, will the 

probability that the operator is busy go up or down?
• Does the formula give the same prediction? 
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An alternative interpretation

• We have derived the following equation: 

• Which can be rewritten as: 

• At steady state: 

Rate of leaving state 0 Rate of entering state 0
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Faster way to obtain steady state solution (1)

• Transition from State 0 to State 1
• Caused by an arrival, the rate is λ

• Transition from State 1 to State 0
• Caused by a completed service, the rate is µ

• State diagram representation
• Each circle is a state
• Label the arc between the states with transition rate

0 1

λ

µ
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Faster way to obtain steady state solution (2)

• Steady state means
• rate of transition out of a state = Rate of transition into a state

• We have for state 0: 

0 1

λ

µ
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Faster way to obtain steady state solution (3)

• We can do the same for State 1: 
• Steady state means

• Rate of transition into a state = rate of transition out of a state
• We have for state 1: 

0 1

λ

µ
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Faster way to obtain steady state solution (4)

• We have one equation 

• We have 2 unknowns and we need one more equation.
• Since we must be either one of the two states:

• Solving these two equations, we get the same steady state solution as 
before 
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Summary 

• Solving a queueing problem is not simple
• It is harder to find how a queue evolves with time
• It is simpler to find how a queue behaves at steady state

• Procedure:
• Draw a diagram with the states
• Add arcs between states with transition rates
• Derive flow balance equation for each state, i.e.

• Rate of entering a state = Rate of leaving a state
• Solve the equation for steady state probability
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Let us have a look at our call centre problem again

• Consider a call centre
• Calls are arriving according to Poisson distribution with rate λ
• The length of each call is exponentially distributed with parameter µ

• Mean length of a call is 1/ µ

Arrivals m operators
If all operators are busy, the centre can put 
at most n additional calls on hold.
If a call arrives when all operators and holding 
slots are used, the call is rejected.

Call centre:

• We solve the problem for m = 1 and n = 0
• We call this a M/M/1/1 queue (explanation on the next page)

• How about other values of m and n
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Kendall’s notation

• To represent different types of queues, queueing theorists 
use the Kendall’s notation

• The call centre example on the previous page can be 
represented as: 

M / M / s (/ B) 

Service time 
distribution
is Markovian
i.e exponential

Number of servers

Buffer Positions
(wait room)

Inter-arrival
distribution
is Markovian
i.e. Exponential

The call centre example on the last page is a M/M/m/(m+n) queue
If n = ∞, we simply write M/M/m 
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M/M/1 queue
Exponential
Inter-arrivals (λ)

Infinite buffer One serverExponential
Service time (µ) 

• Consider a call centre analogy
• Calls are arriving according to Poisson distribution with rate λ
• The length of each call is exponentially distributed with parameter µ

• Mean length of a call is 1/ µ

Arrivals
Call centre with 1 operator
If the operator is busy, the centre will put 
the call on hold.
A customer will wait until his call is answered.

• Queueing theory will be able to answer these questions: 
• What is the mean waiting time for a call?
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Solving M/M/1 queue (1) 
• We will solve for the steady state response
• Define the states of the queue

• State 0 = There is zero job in the system (= The server is idle)
• State 1 = There is 1 job in the system (= 1 job at the server, no job 

queueing)
• State 2 = There are 2 jobs in the system (= 1 job at the server, 1 job 

queueing)
• State k = There are k jobs in the system (= 1 job at the server, k-1 job 

queueing)
• The state transition diagram

0

λ

µ

1

λ

µ

2

λ

µ

3

λ

µ

K-1 k

λ

µ

. . . . .
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Solving M/M/1 queue (2)

0

λ

µ

1

λ

µ

2

λ

µ

3

λ

µ

K-1 k

λ

µ

. . . . .
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Solving M/M/1 queue (3)

0

λ

µ

1

λ

µ

2

λ

µ

3

λ

µ

K-1 k

λ

µ

. . . . .
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Solving M/M/1 queue (4)

0

λ

µ

1

λ

µ

2

λ

µ

3

λ

µ

K-1 k

λ

µ

. . . . .
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Solving M/M/1 queue (5)

In general

We have
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Solving M/M/1 queue (6)

With and

Since

Arrival rate < service rate 

ρ =  utilisation
= Prob server is busy
= 1 - P0
= 1- Prob server is idle
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Solving M/M/1 queue (7)

With 

This is the probability that there are k jobs in the system.
To find the response time, we will make use of Little’s law.
First we need to find the mean number of customers = 
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Solving M/M/1 queue (8)

Little’s law: 
mean number of customers = throughput x response time

Throughput is λ (why?)

λ
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Solving M/M/1 queue (9)

What is the mean waiting time at the queue?

Mean waiting time = mean response time - mean service time

We know mean response time (from last slide)

Mean service time is = 1 / µ

λ
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Using the service time parameter (1/µ = 15ms) in the 
example, let us see how response time T varies with λ

Observation:
Response time
increases
sharply when
ρ gets close
to 1 

Infinite queue
assumption
means ρ → 1,
T→∞
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Multi-server queues M/M/m

All arrivals go into one 
queue.

Customers can be served 
by any one of the m
servers.

When a customer arrives
• If all servers are busy, it 
will join the queue
• Otherwise, it will be 
served by one of the 
available servers

1

2

3

m

Exponential
Inter-arrivals (λ)

Exponential
Service time (µ) 

Infinite buffer

m servers
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A call centre analogy of M/M/m queue 

• Consider a call centre analogy
• Calls are arriving according to Poisson distribution with rate λ
• The length of each call is exponentially distributed with parameter µ

• Mean length of a call is 1/ µ

Arrivals
Call centre with m operators
If all m operators are busy, the centre will put 
the call on hold.
A customer will wait until his call is answered.
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State transition for M/M/m

0

λ

µ

1

λ

2µ

2

λ

3µ

3

λ

mµ

m m+1

λ

mµ

. . . .

mµ

λ
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M/M/m
• Following the same method, we have mean response time T is

where



S1,2016 COMP9334 48

Multi-server queues M/M/m/m with no waiting room

An arrival can be served 
by any one of the m
servers.

When a customer arrives
• If all servers are busy, it 
will depart from the 
system

• Otherwise, it will be 
served by one of the 
available servers

1

2

3

m

Exponential
Inter-arrivals (λ)

Exponential
Service time (µ) 

No waiting
Room or
No buffer

m servers
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A call centre analogy of M/M/m/m queue 

• Consider a call centre analogy
• Calls are arriving according to Poisson distribution with rate λ
• The length of each call is exponentially distributed with parameter µ

• Mean length of a call is 1/ µ

Arrivals
Call centre with m operators
If all m operators are busy, the call is dropped.
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State transition for M/M/m/m

0

λ

µ

1

λ

2µ

2

λ

3µ

3

mµ

mm-1

λ

. .

(m-1)µ

λ

m-2

Probability that an arrival is blocked 
= Probability that there are m customers in the system

where

“Erlang B formula”
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Poisson arrivals see time averages (PASTA)

• Pn = Probability that there are n jobs in the system
• An = Probability that an arriving customer finds n jobs in the 

system
• If the arrival process is Poisson, then An = Pn
• Proof: Need to show the following two expressions are 

equal.

• To be completed in class 

• Key step in the proof, Poisson arrival means 
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What configuration has the best response time? 

Configuration 1: 

processing speed = m p

1

mm servers of
speed p

Arrivals

Configuration 2: 

1

m
Split arrivals
into m queues
m servers of
speed p

Arrivals

Configuration 3: 

Try out the tutorial question!
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• Queues with Poisson arrival are discussed in
• Bertsekas and Gallager, Data Networks, Sections 3.3 to 3.4.3
• Note: I derived the formulas here using continuous Markov chain 
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• Mor Harchal-Balter. Chapters 13 and 14 
• Poisson arrival sees time averages (PASTA)

• See R.W. Wolff, “Poisson Arrivals See Time Averages”, Operational 
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