COMP3421

Week 2 - Transformations in 2D and Vector Geometry Revision

Exercise

1. Write code to draw (an approximation) of the surface of a circle at centre 0,0 with radius 1 using triangle fans.
2. At home, modify the code to draw (an approximation) of the outline of a circle at centre $(1,2)$ with radius 3 using a line strip.

Solution

12 Triangles

32 Triangles

Solution

We can generate points for increasing theta values using

$$
\begin{aligned}
& x=\text { radius }^{*} \cos (\text { theta }) \\
& y=\text { radius }^{*} \sin (\text { theta })
\end{aligned}
$$

Smaller increments give us more points/triangles and a more realistic, smoother 'circle'.

Note: Java math library uses radians, Jogl libraries tend to use degrees
See code for more details

Transformation Matrices

GL defines a number of different matrices for transformations.

The two we will encounter are the modelview matrix and the projection matrix.

So far we have set the projection matrix, which tells GL what kind of camera we are using. We have used an orthographic camera (more on this later).

glMatrixMode

You need to tell GL which matrix you are currently modifying:
// select projection matrix
gl.glMatrixMode (GL2.GL_PROJECTION) ;
// perform operations
// select model-view matrix
gl.glMatrixMode (GL2.GL_MODELVIEW) ;
// perform operations
Always make sure you have the correct matrix.

Initialising Matrices

Always make sure you initialise your matrix when you use it for the first time.

We do this by setting it to the identity matrix (This is like setting a variable you are going to use for multiplication to 1)
//Specify which matrix you are using gl.glMatrixMode (...) ;
//set it to the identity matrix gl.glLoadIdentity();

Model-view

transformation

The model-view transformation describes how the current local coordinate system maps to the global coordinate system.

It is useful to think of it as two transformations combined:
model transformation - local to world
view transformation - world to camera/eye
We will look at them separately.

In OpenGL

To work with the model-view transform, first we select it:
gl.glMatrixMode (GL2.GL_MODELVIEW) ;

The should initialise it to the identity (i.e. no transformation) before we use it.
gl.glLoadIdentity();

Example

Drawing a house:

gl.glMatrixMode (GL2.GL_MODELVIEW) ; gl.glLoadIdentity(); drawHouse () ;

Transformations

We can then apply different transformations to the coordinate system:
gl.glTranslated(dx, $d y, d z) ;$
gl.glRotated(angle, $x, y, z) ;$
gl.glScaled(sx, sy, sz);
Subsequent drawing commands will be in the transformed coordinate system.

glTranslated

Translate the coordinate space by the specified amount along each axis.
gl.glMatrixMode (GL2.GL_MODELVIEW) ; gl.glLoadIdentity();
gl.glTranslated (1, $-1,0)$; drawHouse ();
In this case the origin of the co-ordinate frame moves.

glRotated

Rotate the coordinate space by the specified angle and axis.
gl.glMatrixMode (GL2.GL_MODELVIEW) ; gl.glLoadIdentity();
// rotate 45°
// about the z-axis
gl.glRotated (45, 0, 0, 1);
 drawHouse () ;

Notice, the origin of the co-ordinate frame doesn't move

glRotated

Angles are in degrees.
Positive rotations are rotating x towards y. Negative rotations are rotating y towards x. gl.glMatrixMode(

GL2.GL_MODELVIEW) ;
gl.glLoadIdentity();
// rotate -45°
// about the z-axis
gl.glRotated (-45, 0, 0, 1);
drawHouse () ;

glScaled

Scale the coordinate space by the specified amounts in the \mathbf{x}, \mathbf{y} and \mathbf{z} (in 3d) directions.
gl.glMatrixMode (GL2.GL_MODELVIEW) ; gl.glLoadIdentity();
gl.glScaled (2, 0.5, 1); drawHouse () ;

Notice again, the origin of the co-ordinate doesn't move.

glScaled

Negative scales create reflections.
gl.glMatrixMode (GL2.GL_MODELVIEW) ; gl.glLoadIdentity();
// flip horizontally gl.glScaled(-1, 1, 1); drawHouse () ;

glScaled

Negative scales create reflections.
gl.glMatrixMode (GL2.GL_MODELVIEW) ; gl.glLoadIdentity();
// flip vertically gl.glScaled(1, -1, 1); drawHouse () ;

glRotated

If the object is not located at the origin, it might not do what you expect when its coordinate frame is rotated.

The origin of the co-ordinate frame is the pivot point.

glScaled

If the object is not located at the origin, the object will move further from the origin if its co-ordinated frame is scaled

Only points at the origin remain unchanged.

Successive

 Transformations

 Transformations}

We can think of transformations in two ways

1. An object being transformed or altered within a fixed co-ordinate system.
2. The co-ordinate system of the object being transformed. This is generally the way we will think of it.

Brown University

Game

http://graphics.cs.brown.edu/research/explo ratory/freeSoftware/repository/edu/brown/cs /exploratories/applets/transformationGame/ transformation_game_guide.html

Combining transforms

A sequence of transforms take place in successive coordinate systems:
gl.glLoadIdentity();

Combining transforms

A sequence of transforms take place in successive coordinate systems:
gl.glLoadIdentity();
gl.glTranslated (2, 1, 0);

Combining transforms

A sequence of transforms take place in successive coordinate systems:
gl.glLoadIdentity();
gl.glTranslated (2, 1, 0);
gl.glRotated(-45, 0, 0, 1);

Combining transforms

A sequence of transforms take place in successive coordinate systems:
gl.glLoadIdentity();
gl.glTranslated (2, 1, 0);
gl.glRotated (-45, 0, 0, 1); gl.glScaled (2, 1, 1);

Combining transforms

A sequence of transforms take place in successive coordinate systems:
gl.glLoadIdentity();
gl.glTranslated (2, 1, 0);
gl.glRotated(-45, 0, 0, 1); gl.glScaled (2, 1, 1):
gl.glTranslated (-0.5, 0, 0)

Order matters

Note that the order of transformations matters.
translate then rotate != rotate then translate translate then scale != scale then rotate rotate then scale != scale then rotate

Instance

Transformation

Usually we want: translate(T), rotate(R), scale(S) : M = TRS

We can specify objects once in a convenient local co-ordinate system

We can have multiple occurrences in the scene at the desired size orientation and location by applying the desired instance transformation

Non-uniform Scaling then Rotating

If we scale by different amounts in the x direction to the y direction and then rotate, we get unexpected and often unwanted results. Angles are not preserved.

Rotating about an arbitrary point.

So far all rotations have been about the origin.
To rotate about an arbitrary point.

1. Translate to the point
gl.gltranslated ($0.5,0.5,0$)
2. Rotate
gl.glrotated (45, 0, 0, 1) ;
3. Translate back again
gl.gltranslated (-0.5,-0.5,0);

Rotating about an

 arbitrary point.

Current

Transformation (CT)

Calls to gITranslate, gIRotate and gIScale modify (post multiply - more on this later) the current transformation/co-ordinate frame.

Every time gIVertex2d() is called, the fixed function pipeline transforms the given point by the $C T$.

Push and pop

Often we want to store the current transformation/coordinate frame, transform it and then restore the old frame again.

GL provides a stack of matrices for this purpose. Push and pop using:
// store the current matrix gl.glPushMatrix();
// restore the last pushed matrix gl.glPopMatrix();

Scene Graphs

Consider drawing and animating a figure such as this person:

We could calculate all the vertices based on the angles angle lengths, but this would be long and error-prone.

Scene graph

To represent a complex scene we use a scene graph. This tree describes how different objects in the scene are connected together:

Coordinate system

We draw each part in its own local coordinate system:
// draw a foot
gl.glBegin(GL2.GL_POLYGON) ;

$$
\begin{aligned}
& \text { gl.glVertex2d (0, } 0) ; \\
& \text { gl.glVertex2d }(0, \\
& \text { gl. } \\
& \text { glVertex2d }(2, \\
& -1) ;
\end{aligned}
$$

gl.glEnd();

Coordinate system

Then we transform the coordinate system:
translating
rotating
scaling

To get it into the position we want.
But from the object's point of view, nothing has changed.

Scene graph

Each part draws itself in its own local coordinate frame and then transforms the coordinate frame to draw its subparts appropriately.
When a node in the graph is moved, all its children move with it.

Scene graph pseudocode push model-view matrix

drawTree() \{
translate to new origin
rotate
scale
draw this object
for all children:
child.drawTree()
pop matrix

Camera

So far we have assumed world coordinate $(0,0)$ is the centre of the world window.

It is useful to imagine the camera as an object itself, with its own position, rotation and scale.

View transform

The world is rendered as it appears in the camera's local coordinate frame.

The view transform converts the world coordinate frame into the camera's local coordinate frame.

Note that this is the inverse of the transformation that would convert the camera's local coordinate frame into world coordinates.

View transform

Consider the world as if it was centered on the camera. The camera stays still and the world moves.

Moving the camera left
= moving the world right
Rotating the camera clockwise
= rotating the world anticlockwise
Growing the camera's view
= shrinking the world

View transform

Mathematically if:

$$
P_{\text {world }}=\operatorname{Trans}\left(\operatorname{Rot}\left(\operatorname{Scale}\left(P_{\text {camera }}\right)\right)\right)
$$

Then the view transform is:

$$
P_{\text {camera }}=S c a l e^{-1}\left(\operatorname{Rot}^{-1}\left(\operatorname{Trans}^{-1}\left(P_{\text {world }}\right)\right)\right)
$$

Implementing a

camera

To implement a camera, we need to apply the view transform before the model transform:
gl.glMatrixMode (GL2.GL_MODELVIEW) ; gl.glLoadIdentity();
// apply the view transform gl.glScaled (1.0 / cameraScale, ...); gl.glRotated(-cameraAngle, 0, 0, 1); gl.glTranslated(-camX, -camY, 0);
// apply the model transform + draw...

In the scene graph

We can add the camera as an object in our

In the scene graph

We need to compute the camera's transformations in world coordinates (and then get the inverse) in order to compute the view transform.

We can do this by working recursively up the scene graph.

We will cover the maths necessary to do this calculation in the rest of this and the following lecture.

Assignment 1

Game Engine: Scene Graph (Tree)
Provided code: Fill in Code in TODO comments/tags
GameObject - node in the n-ary tree

- each node has t, r, s
- n children
- 1 parent

Subclasses: polygonalGameObject etc.

Assignment 1

Automarking
Junit 4 Unit Tests
diff image files that you output with required image output
Tutor subjective marking
MyCoolGameObject
Bonus Game

Homework

Draw a possible scene graph for the sailing game given with assignment 1

Coordinate frames

To represent coordinate frames and easily convert points in one frame to another we use vectors and matrices.

Some revision first.

Vectors

Having the right vector tools greatly simplifies geometric reasoning.
A vector is a displacement.

Vectors

Having the right vector tools greatly simplifies geometric reasoning.
A vector is a displacement.

We represent it as a tuple of values in a particular coordinate system.

Points vs Vectors

Vectors have

- length and direction
- no position

Points have

- position
- no length, no direction

Points and Vectors

The sum of a point and a vector is a point.
$P+\mathbf{v}=\mathrm{Q}$
Which is the same as saying
The difference between two points is a vector:
$\mathbf{v}=\mathrm{Q}-\mathrm{P}$

Adding vectors

By adding components:

Subtracting vectors

By subtracting components:

$$
\mathbf{u}=\binom{u_{1}}{u_{2}} \frac{\mathbf{u}-\mathbf{v}=\binom{u_{1}-v_{1}}{u_{2}-v_{2}}}{\mathbf{v}=\binom{v_{1}}{v_{2}}}
$$

Linear combinations

Any equation of the form:

$$
a_{1} \mathbf{v}_{\mathbf{1}}+a_{2} \mathbf{v}_{\mathbf{2}}+\ldots+a_{n} \mathbf{v}_{\mathbf{n}}
$$

Affine combinations

A linear combination where:

$$
a_{1}+a_{2}+\ldots+a_{n}=1
$$

Convex combinations

An affine combination where:

$$
0 \leq a_{i} \leq 1
$$

Magnitude

Magnitude (i.e. length)

$$
|\mathbf{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

Normalisation:

$$
\begin{aligned}
& \hat{\mathbf{v}}=\frac{\mathbf{v}}{|\mathbf{v}|} \\
& |\hat{\mathbf{v}}|=1
\end{aligned}
$$

Exercises

1. What is the vector \mathbf{v} from P to Q if

$$
P=(4,0), Q=(1,3) ?
$$

2. Find the magnitude of the vector $(1,1)$
3. Normalise the vector $(8,6)$

Solutions

1. What is the vector \mathbf{v} from P to Q if $P=(4,0), Q=(1,3)$?
$\mathbf{v}=\mathrm{Q}-\mathrm{P}$
$=(1,3)-(4,0)$
$=(1-4,3-0)$
$=(-3,3)$

P

Solutions

2. Find the magnitude of the vector $(1,1)$

$$
\begin{aligned}
|(1,1)| & =\operatorname{sqrt}\left(1^{\wedge} 2+1^{\wedge} 2\right) \\
& =\operatorname{sqrt}(2) \\
& =1.4
\end{aligned}
$$

Magnitude is 1.4

Solutions

3. Normalise the vector $(8,6)$

$$
\hat{\mathbf{v}}=\frac{\mathbf{v}}{|\mathbf{v}|}
$$

$$
|(8,6)|=\operatorname{sqrt}\left(8^{\wedge} 2+6^{\wedge} 2\right)
$$

$$
=\operatorname{sqrt}(64+36)
$$

$$
=10
$$

Normalised vector is $(8,6) / 10$

$$
=(0.8,0.6)
$$

Dot product

Definition: $\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}$
Example: $(1,2) \cdot(-1,3)=1^{*}-1+2^{*} 3=5$

Properties:

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =\mathbf{v} \cdot \mathbf{u} \\
(a \mathbf{u}) \cdot \mathbf{v} & =a(\mathbf{u} \cdot \mathbf{v}) \\
\mathbf{u} \cdot(\mathbf{v}+\mathbf{w}) & =\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w} \\
\mathbf{u} \cdot \mathbf{u} & =|\mathbf{u}|^{2}
\end{aligned}
$$

Angle between

vectors

$$
\begin{gathered}
\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta \\
\cos \theta=\hat{\mathbf{u}} \cdot \hat{\mathbf{v}}
\end{gathered}
$$

$$
\begin{aligned}
& \mathbf{u} \cdot \mathbf{v}>0 \Longrightarrow \theta<90^{\circ} \\
& \mathbf{u} \cdot \mathbf{v}=0 \Longrightarrow \theta=90^{\circ} \\
& \mathbf{u} \cdot \mathbf{v}<0 \Longrightarrow \theta>90^{\circ}
\end{aligned}
$$

Normals in 2D

If two vectors are perpendicular, their dot product is 0 .

If $\mathrm{n}=(\mathrm{nx}, \mathrm{ny})$ is a normal to
$\mathrm{p}=(\mathrm{x}, \mathrm{y})$
$p \cdot n=x n x+y n y=0$
So either unless one is the 0 vector

$$
n=(y,-x) \text { or } n=(-y, x)
$$

Cross product

Only defined for 3D vectors:

$$
\mathbf{a} \times \mathbf{b}=\left(\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right)
$$

Properties:

$$
\begin{array}{r}
\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a}) \\
\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=0 \\
\mathbf{b} \cdot(\mathbf{a} \times \mathbf{b})=0
\end{array}
$$

Can use to find normals

axb vs bxa

Assume we have a right-handed coordinate system.

Curl the fingers of your right hand from a to b. axb will point in the direction of your thumb.

If you curl the fingers of your right hand from \mathbf{b} to \mathbf{a} you will get $\mathbf{b x a}$ which should point in the opposite direction to axb.

Memory Aid

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b}= & \left\lvert\, \begin{array}{llll}
\mathbf{i} & \mathbf{j} & \mathbf{k} & \mid \\
& \left\lvert\, \begin{array}{lll}
\text { a1 } & \text { a2 } & \text { a3 }
\end{array}\right. \\
& \left\lvert\, \begin{array}{lll}
\text { b1 } & \text { b2 } & \text { b3 }
\end{array}\right. & \mid \\
=a 2 b 3 & -a 3 b 2+a 3 b 1-a 1 b 3+a 1 b 2-a 2 b 1
\end{array}\right.
\end{aligned}
$$

Cross product

The magnitude of the cross product is the area of the parallelogram formed by the vectors:

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

a

Exercises

1. Find the angle between vectors $(1,1)$ and ($-1,-1$)
2. Is vector $(3,4)$ perpendicular to $(2,1)$?
3. Find a vector perpendicular to vector a where $\mathbf{a}=(2,1)$
4. Find a vector perpendicular to vectors a and \mathbf{b} where $\mathbf{a}=(3,0,2) \mathbf{b}=(4,1,8)$

Solutions

1. Find the angle between vectors $(1,1)$ and $(-1,-1)$
$\cos \theta=\hat{\mathbf{u}} \cdot \hat{\mathbf{v}}$
$|(1,1)|=\operatorname{sqrt}(2)$
$|(-1,-1)|=\operatorname{sqrt}(2)$
$\cos (\mathrm{t})=(1 / \mathrm{sqrt}(2), 1 / \operatorname{sqrt}(2)) .(-1 / \mathrm{sqrt}(2),-1 / \mathrm{sqrt}(2))$

$$
=-1
$$

$t=180$ degrees (ie anti-parallel)

Solutions

2. Is $(3,4)$ perpendicular to $(2,1)$?
$(3,4) \cdot(2,1)=6+4=10$
10 != 0 so not perpendicular (< 90degrees)
3. Find a vector perpendicular to vector a where $\mathbf{a}=(2,1)$
$(-1,2)$ or $(1,-2)$

Solutions

4. Find a vector perpendicular to vectors a and \mathbf{b} where $\mathbf{a}=(3,0,2) \mathbf{b}=(4,1,8)$

$$
\begin{aligned}
\mathbf{a} \mathbf{b} & =(0-2,8-24,3-0) \\
& =(-2,-16,3) \text { OR } \mathbf{b} \times \mathbf{a}=(2,16,-3)
\end{aligned}
$$

Homework

Revise matrix multiplication for next week.

