
COMP3421
The programmable pipeline and Shaders

The graphics pipeline

Projection

transformation
Illumination

Clipping
Perspective

division
ViewportRasterisation

Texturing
Frame

buffer
Display

Hidden

surface

removal

Model-View Transform

Model

Transform

View

Transform

Model

User

The graphics pipeline

Projection

transformation

Vertex

shading

Clipping
Perspective

division
ViewportRasterisation

Fragment

shading

Frame

buffer
Display

Hidden

surface

removal

Model-View Transform

Model

Transform

View

Transform

Model

User

Shading
Illumination (a.k.a shading) is done at two

points in the fixed function pipeline:

• Vertices in the model are shaded

before projection.

• Pixels (fragments) are shaded in the

image after rasterisation.

• Doing more work at the vertex level is

more efficient. Doing more work at the

pixel level can give better results.

Vertex shading

The built-in lighting in OpenGL is mostly

done as vertex shading.

The lighting equations are calculated for

each vertex in the image using the

associated vertex normal.

Illumination

is calculated at

each of these

vertices.

Vertex shading

The normal vector m used to compute the

lighting equation is the normal we specified

when creating the vertex using

gl.glNormal3d(mx, my, mz);

m

Vertex shading

This is why we use different normals on

curved vs flat surfaces, so the vertex may

be lit properly.

m

Vertex shading

Illumination values are attached to each

vertex and carried down the pipeline until

we reach the fragment shading stage.

struct vert {

float[4] pos; // vertex coords

float[4] light; // rgba colour

// other info...

}

Fragment shading

Knowing the vertex properties, we need

calculate appropriate colours for every pixel

that makes up the polygon.

There are three common options:

• Flat shading

• Gouraud shading

• Phong shading

In OpenGL

// Flat shading :

gl.glShadeModel(GL2.GL_FLAT);

// Gouraud shading (default):

gl.glShadeModel(GL2.GL_SMOOTH);

// Phong shading:

// No built-in implementation

Flat shading

The simplest option is to shade the entire

face the same colour:

• Choose one vertex (arbitrarily chosen

by OpenGL…)

• Take the illumination of that vertex

• Set every pixel to that value.

Flat shading

Flat shading is good for:

• Diffuse illumination

• for flat surfaces

• with distant light sources

It is the fastest shading option.

m

s

m

s

flat surface =

constant normal

distant source =

constant source vector

constant

diffuse illumination

Flat shading
Flat shading is bad for:

• close light sources

• specular shading

• curved surfaces

• Edges between faces

become more pronounced

than they actually are (Mach banding)

m

s

m

s

curved surface =

varying normal

close source =

varying source vector

varying

diffuse + specular illumination

Gouraud shading

Gouraud shading is a simple smooth

shading model.

We calculate fragment colours by bilinear

interpolation on neighbouring vertices.

P

x

y
R1

R2

x1 x2

V1

V2

V3

V4

Gouraud shading

Gouraud shading is good for:

• curved surfaces

• close light sources

• diffuse shading

m

s

m

s

curved surface =

varying normal

varying

diffuse illumination

Gouraud shading
Gouraud shading is only slightly more expensive

than flat shading.

It handles specular highlights poorly.

• It works if the highlight occurs at a vertex.

• If the highlight would appear in the middle

of a polygon it disappears.

• Highlights can appear to jump around from

vertex to vertex with light/camera/object

movement

Phong shading
Phong shading is designed to handle specular

lighting better than Gouraud. It also handles

diffuse better as well.

It works by deferring the illumination calculation

until the fragment shading step.

So illumination values are calculated per

fragment rather than per vertex.

Not implemented on the fixed function pipeline.

Need to use the programmable pipeline.

Phong shading
For each fragment we need to know:

• source vector s

• eye vector v

• normal vector m

Knowing the source location, camera

location and fragment location we can

compute s and v.

What about m?

Normal interpolation

Phong shading approximates m by

interpolating the normals of the polygon.

Vertex normals

Normal interpolation

Phong shading approximates m by

interpolating the normals of the polygon.

Interpolated

fragment normals

Normal interpolation

In a 2D polygon we do this using (once

again) bilinear interpolation.

However the interpolated normals will vary

in length, so they need to be normalised

(set length = 1) before being used in the

lighting equation.

Phong shading

Pros:

• Handles specular lighting well.

• Improves diffuse shading

• More physically accurate

Phong shading

Cons:

• Slower than Gouraud as normals and

illumination values have to be

calculated per pixel rather than per

vertex. In the old days this was a BIG

issue. Now it is usually ok.

`

Fixed function pipeline

Projection

transformation
Illumination

Clipping
Perspective

division
ViewportRasterisation

Texturing
Frame

buffer
Display

Hidden

surface

removal

Model-View Transform

Model

Transform

View

Transform

Model

User

Vertex transformations

Fragment transformations

Programmable

pipeline

Clipping
Perspective

division
ViewportRasterisation

Fragment

Shader

Frame

buffer
Display

Hidden

surface

removal

Model

User

Vertex transformations

Fragment transformations

Vertex Shader

Shaders
The programmable pipeline allows us to

write shaders to perform arbitrary vertex

and fragment transformations. (There are

also optional tessellation and geometry

shaders.)

Shaders are written in a special language

called GLSL (GL Shader Language)

suitable for specifying functions on the

GPU.

Basic Vertex Shader
/* This does the bare minimum. It

transforms the input gl_Vertex and

outputs the gl_Position value in

4DCVV coordinates */

void main(void) {

gl_Position =

gl_ModelViewProjectionMatrix *

gl_Vertex;

}

Basic Fragment

Shader
/* Make every fragment red */

void main (void) {

gl_FragColor =vec4(1.0,0.0,0.0,1.0);

}

GPU

The graphics pipeline performs the same

transformations to thousands of millions of

vertices and fragments.

These transformations are highly

parallelisable.

The GPU is a large array of SIMD (single

instruction, multiple data) processors.

Vertex Shaders

Replaces fixed function

• vertex transformation

• normal transformation, normalization

• vertex illumination

• Has access to OpenGL states such as

model view transforms, colors etc (in later

versions these must be explicitly passed in).

These variables start with gl_ (eg gl_Color)

Vertex Shaders
Input: individual vertex in model coordinates

Output: individual vertex in clip (4Dcvv)

coordinates

They may also be sent other inputs from the

application program and output color,lighting

and other values for the fragment shader

They operate on individual vertices and

results can’t be shared with other vertices.

They can’t create or destroy a vertex

Fragment Shaders

Replaces fixed function

• texturing and colouring the fragment.

Enables lighting to be done at the fragment

stage (such as phong shading) which could not

be done in fixed function pipeline

Has access to OpenGL states (in later versions

this must be explicitly passed in)

Fragment Shaders
Input: individual fragment in window

coordinates

Output: individual fragment in window

coordinates (with color set)

May receive inputs (that may be interpolated)

from the vertex shader and inputs from the

application program.

They can’t share results with other fragments.

Can access and apply textures.

Fragment Shaders

The fragment shader does not replace the

fixed functionality graphics operations that

occur at the back end of the OpenGL pixel

processing pipeline such as

• depth testing

• alpha blending.

Setting up Shaders
1.Create one or more empty shader objects with

glCreateShader.

2.Load source code, in text, into the shader with
glShaderSource.

3.Compile the shader with glCompileShader.

4.Create an empty program object with
glCreateProgram. This returns an int ID.

5.Bind your shaders to the program with
glAttachShader.

6.Link the program with glLinkProgram.

7.See Shader.java for details

Setting up Shaders in

OpenGL code
// create shader objects and

// reserve shader IDs

int vertShader =

gl.glCreateShader(GL2.GL_VERTEX_

SHADER);

int fragShader =

gl.glCreateShader(GL2.GL_FRAGMEN

T_SHADER);

OpenGL

// compile shader which is just

// a string (do once for vertex

// and then for fragment)

gl.glShaderSource(

vertShader,

vShaderSrc.length,

vShaderSrc, vLengths, 0);

gl.glCompileShader(vertShader);

OpenGL

// check compilation

int[] compiled = new int[1];

gl.glGetShaderiv(vertShader,

GL2ES2.GL_COMPILE_STATUS,

compiled, 0);

if (compiled[0] == 0) {

// compilation error!

}

OpenGL
// program = vertex shader + frag shader

int shaderprogram =

gl.glCreateProgram();

gl.glAttachShader(shaderprogram,

vertShader);

gl.glAttachShader(shaderprogram,

fragShader);

gl.glLinkProgram(shaderprogram);

gl.glValidateProgram(shaderprogram);

Using Shaders
After your shaders have been set up you

need to tell OpenGL what shaders to use.

OpenGL uses the current shader program.

To set the current shader use:

gl.glUseProgram(shaderProgramID);

Using Shaders
Can set multiple shaders within a program.

gl.glUseProgram(shaderProgram1);

//render an object with shaderprogram1

gl.glUseProgram(shaderProgram2);

//render an object with shaderprogram2

gl.glUseProgram(0);

//render an object with fixed function

pipeline

Interpolated

FragmentShader

Color Data

FragmentShader

VertexShader

JOGL
gl.glColor3f

glFrontColor = gl_Color

glFragColor = gl_Color; glFragColor = gl_Color;

glBackColor = gl_Color
Interpolated

Passthrough Vertex

Shader
void main(void) {

gl_Position =

gl_ModelViewProjectionMatrix *

gl_Vertex;

gl_FrontColor = gl_Color;

gl_BackColor = gl_Color;

}

Passthrough Fragment

Shader
/* fragment shader */

void main(void) {

/* gl_FrontColor and gl_BackColor are

set by each vertex in the vertex

shader and the rasteriser

interpolates the appropriate value to

get the fragment gl_Color */

gl_FragColor = gl_Color;

}

Interpolation

By default the rasteriser interpolates vertex

attributes such as

positions, colors, normals

across primitives to generate the right

interpolated values for fragments.

We can turn on flat shading in jogl or use

the keyword flat in our own shader

variables to stop interpolation.

GLSL Syntax
C like language with

• No long term memory

• Basic types: float int bool

• Other type: sampler (textures)

• C++ Style Constructors

• Standard C/C++ arithmetic and logic operators

• if statements,loops

GLSL Syntax
Has limited support for loops

for(i=0; i< n; i++){

/* etc */

}

Conditional branching is much more

expensive than on CPU!

Do not use too much – especially in

fragment shader (there are usually lots of

fragments!)

GLSL Syntax
Has support for 2D, 3D, 4D vectors (array

like list like containers) of different types

• vec2, vec3, vec4 are float vectors.

• ivec2, ivec3, ivec4 are int vectors.

Has support for float matrix types

• mat2, mat3, mat4

Operators are overloaded for matrix and

vector operations

GLSL Syntax

No characters, strings or printf

No pointers

No recursion

No double (limited support in later versions)

May not cast implicitly eg

vec3(1,0,1) may NOT work as it needs

float. vec3(1.0,0.0,1.0) is correct.

Vectors
C++ Style Constructors

vec3 a = vec3(1.0, 2.0, 3.0);

For vectors can use [], xyzw, rgba

vec3 v;

v[1], v.y, v.g all refer to the same element

Swizzling: vec3 a, b;

a.xy = b.yx;

Matrix Components
Matrices are in column major order

M[i][j] is column i row j

mat4 m = mat4(1.0); //identity matrix

m = mat4(1.0,2.0,3.0,4.0, //first col

5.0,6.0,7.0,8.0, //second col

9.0,10.0,11.0 12.0, //third col

13.0,14.0,15.0,16.0); //fourth col

float f = m[0][1]; //Would be 2.0

Variable Qualifiers
uniform: read-only input variables to vertex

or fragment shader. Can’t be changed for a

given primitive.

Attributes: May be different for each vertex.

in : read-only input variables to vertex

shader.

out, in : Outputs from the vertex shader that

are passed in to the fragment shader. They

are interpolated for each fragment

GLSL Compatability

Macs may not have version #130

Use #120 and change

in to attribute in your vertex shader

out to varying in your vertex shader

in to varying in your fragment shader

Built in Vertex Shader

Attributes
in: gl_Vertex,

gl_Normal,

gl_Color

out: gl_FrontColor,

gl_BackColor,

gl_Position (must be written)

Built in Fragment

Shader Variables
in: gl_FragCoord

gl_Color - If this is a front facing it will be

the interpolated value set by the vertex

shader for gl_FrontColor, (if it is back facing

it will be gl_BackColor Note: gl_BackColor

does not work on my computer).

out: gl_Fragment (fragment colour)

in/out: gl_depth

Built-in Uniform

Variables
gl_ModelViewMatrix

gl_ModelViewProjectionMatrix,

gl_NormalMatrix

gl_LightSource[0].position (in camera

coords)

gl_LightSource[0].diffuse

etc

Aside: gl_NormalMatrix
If the modelview matrix contains a non-

uniform scale then it will not transform

normals properly. It is no longer

perpendicular!

gl_NormalMatrix

Instead we use the transpose of the inverse

of the upper left 3*3 corner of the

modelview matrix.

The fixed function pipeline has been doing

this behind the scenes for us.

We can use gl_NormalMatrix

Derivation (not examinable)

http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/the-normal-matrix/

Garoud

vertex shader
void main() {

//Ambient light calculations

vec4 globalAmbient =

gl_LightModel.ambient *

gl_FrontMaterial.ambient;

vec4 ambient =

gl_LightSource[0].ambient *

gl_FrontMaterial.ambient;

Garoud

vertex shader
//Diffuse calculations

vec3 v, normal, lightDir;

// transform the normal into eye space and normalize

normal = normalize(gl_NormalMatrix * gl_Normal);

//transform co-ords into eye space

v = vec3(gl_ModelViewMatrix * gl_Vertex);

// Assuming point light, get a vector TO the light

lightDir = normalize(gl_LightSource[0].position.xyz - v);

float NdotL = max(dot(normal, lightDir), 0.0);

vec4 diffuse = NdotL * gl_FrontMaterial.diffuse *

gl_LightSource[0].diffuse;

Garoud

vertex shader
vec4 specular = vec4(0.0,0.0,0.0,1.0);

vec3 dirToView = normalize(-v);

vec3 H = normalize(dirToView+lightDir);

// compute specular term if NdotL is larger than zero

if (NdotL > 0.0) {

float NdotHV = max(dot(normal, H),0.0);

specular = gl_FrontMaterial.specular *

gl_LightSource[0].specular *

pow(NdotHV,gl_FrontMaterial.shininess);

}

Garoud

vertex shader

gl_FrontColor = gl_FrontMaterial.emission +

globalAmbient +

ambient +

diffuse +

specular;

gl_Position = gl_ModelViewProjectionMatrix *

gl_Vertex;

}

Garoud Light

fragment shader
//gl_Color is calculated in the

vertex shader and interpolated

void main() {

gl_FragColor = gl_Color;

}

Phong

vertex shader
/* data associated with each vertex */

out vec3 N; //Send eyeCoords normal to fragment shader

out vec3 v; //Send eyeCoords position to fragment shader

void main(){

/* send point and the normal in camera coords to the

fragment shader – these will be interpolated */

v = vec3(gl_ModelViewMatrix * gl_Vertex);

N = normalize(gl_NormalMatrix * gl_Normal);

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

Phong

fragment shader
in vec3 N; //Interpolated from vertex shader outputs

in vec3 v; //Interpolated from vertex shader outputs

void main (void){

vec3 lightDir =

normalize(gl_LightSource[0].position.xyz - v);

vec3 dirToView = normalize(-v);

vec3 normal = normalize(N);

//etc same calculations as done in the

// specular vertex shader

// except we are doing calculations on EVERY fragment

gl_FragColor = globalAmbient + ambient + diffuse +

specular;

}

Things to try

These shaders have not handled basics

such as

multiple lights

two sided lighting

lights being enabled/disabled

directional lights, spotlights etc

attenuation...

More...
There are many more shading algorithms

designed to implement different lighting

techniques with different levels of speed

and accuracy.

For example Cook Torrance is a more

realistic model than Phong or Blinn-Phong

Check out the Graphics Gems and GPU

Gems books for lots of ideas.

User Defined

Variables
To pass in your own uniforms or attribute

‘in’ variables into your shaders from the
application program
int loc =

gl.glGetUniformLocation(shaderProgram,”myVal”

);

gl.glUniform1f(loc,0.5);

//Or for attributes

int loc =

glGetAttribLocation(shaderProgram,”myVal”);

gl.glVertexAttrib1f(loc, 1, 1, 0, 1);

Optional Shaders

In later versions on GLSL, there are

optional shaders between the vertex shader

and the clipping stage.

Tesselation Shaders: can create additional

vertices in your geometry

Geometry Shader: can be used to add,

modify, or delete geometry,

GLSL Documentation

For the version compatible with class

demos and slides:

https://www.opengl.org/registry/doc/GLSLa

ngSpec.Full.1.30.10.pdf

