
COMP3421
Particle Systems, Rasterisation



Particle systems
Some visual phenomena are best modelled as 
collections of small particles. 

Examples: rain, snow, fire, smoke, dust



Particle systems
Particles are usually represented as small 
textured quads or point sprites – single vertices 
with an image attached.  

They are billboarded, i.e transformed so that 
they are always face towards the camera.



Billboarding



Billboarding
An approximate form of billboarding can be 
achieved by having polygons face a plane 
perpendicular to the camera



Billboarding
We can apply this approximation by altering the 
model-view matrix.
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OpenGL
float modelview[16]; 

gl.glPushMatrix(); 

// get the current modelview matrix 

gl.glGetFloatv(GL_MODELVIEW_MATRIX , modelview); 

// modify the matrix 

billboard(modelview); 

gl.glLoadMatrixf(modelview) 

drawObject(gl) 

gl.glPopMatrix();



Particle systems
Particles are created by an emitter object and 
evolve over time, usually changing position, size, 
colour.

emitter



Particle evolution
Usually the rules for particle evolution are 
simple local equations:

interpolate from one colour to another 
over time

move with constant speed or acceleration.

To simulate many particles it is important these 
update steps are kept simple and fast.



Particles on the GPU
Particle systems are well suited to 
implementation as vertex shaders.

The particles can be represented as individual 
point vertices.

A vertex shader can compute the position of 
each particle at each moment in time.



Particle System
uniform vec3 vel; 
uniform float g, t; 

void main(){ 
    vec3 pos; 
    pos.x = gl_Vertex.x + vel.x*t; 
    pos.y = gl_Vertex.y + vel.y*t  
                        + g*t*t; 
    pos.z = gl_Vertex.z + vel.z*t; 

gl_Position =  
  ModelViewProjectionMatrix*vec4(pos,1); 
} 



Exercise
Adapt the fireworks example to create a 
tornado.



Solution
See code.



The graphics pipeline
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Rasterisation
Rasterisation is the process of converting lines 
and polygons represented by their vertices into 
fragments. 

Fragments are like pixels but include color, 
depth, texture coordinate. They may also never 
make it to the screen due to hidden surface 
removal or culling. 



Rasterisation
This operation needs to be accurate and 
efficient.

For this reason we prefer to use simple integer 
calculations.

All are calculations are now in 2D screen space.



Drawing lines

(x0, y0)

(x1, y1)
(x, y)



Drawing lines - bad
double m = (y1-y0)/(double)(x1-
x0); 

double b = y0 - m * x0; 

for (int x = x0; x <= x1; x++) { 

    int y = round(m * x + b); 

    drawPixel(x, y); 

}



Problems
• Floating point math is slow and 

creates rounding errors
•Floating point multiplication, addition 
and round for each pixel

• Code does not consider:
•Points are not connected if m > 1
•Divide by zero if x0 == x1 (vertical 
lines)

•Doesn't work if x0 > x1



Example: y = 2x



Incremental – still bad
// incremental algorithm 

double m = (y1-y0)/(double)(x1-x0); 

double y = y0; 

for (int x = x0; x <= x1; x++) { 

  y += m; //one less multiplication 

  drawPixel(x, round(y)); 

}



Bresenham's algorithm
We want to draw lines using only integer 
calculations and avoid multiplications.

Such an algorithm is suitable for fast 
implementation in hardware.

The key idea is that calculations are done 
incrementally, based on the values for the 
previous pixel.



Bresenham's algorithm
We shall assume to begin with that the line is in 
the first octant. 

I.e. x1 > x0, y1 > y0 and m <= 1



Bresenham’s Idea
For each x we work out which pixel we set next 

The next pixel with the same y value 

if the line passes below the midpoint

between the two pixels

Or the next pixel with an increased y value

if the line passes above the midpoint

between the two pixels



Bresenham's algorithm

P (xi, yi)

M

L (xi+1, yi)

U (xi+1, yi+1)

M1

M2



Pseudocode
int y = y0; 

for (int x = x0; x <= x1; x++) { 

   setPixel(x,y); 

   M = (x + 1, y + 1/2) 

   if (M is below the line)       

      y++ 

}



Testing above/below
We’re on the line when:

w = x1− x0
h = y1− y0
m = h /w
y − y0 = m(x − x0)
0 = m(x − x0)− (y − y0)



Testing above/below
We’re above the line when:

0 < m(x − x0)− (y − y0)
0 < (h /w)(x − x0)− (y − y0)
0 < h(x − x0)−w(y − y0)
0 < 2h(x − x0)− 2w(y − y0)



Testing above/below

We call this value F

F(x, y) = 2h(x − x0)− 2w(y − y0)
F(x, y) < 0 ⇒ (x, y) is below line
F(x, y) > 0 ⇒ (x, y) is above line



Midpoints

P (xi, yi)

M M1

M2



Incrementally

F(M ) = 2h(x0 +1− x0)− 2w(y0 + 1
2 − y0)

= 2h −w
F(M 1) = 2h(x0 + 2 − x0)− 2w(y0 + 1

2 − y0)
= F(M )+ 2h

F(M 2) = 2h(x0 + 2 − x0)− 2w(y0 + 3
2 − y0)

= F(M )+ 2h − 2w



Complete
int y = y0;  
int w = x1 - x0; int h = y1 - y0;  
int F = 2 * h - w; 

for (int x = x0; x <= x1; x++) {  
  setPixel(x,y); 

  if (F < 0) F += 2*h;  
  else {  
     F += 2*(h-w);  y++;  
  }  
}



Example

x y F

0 0 2

(0,0)

(8,5)

w = 8
h = 5

int F = 2 * h - w;



Example

x y F

0 0 2

(0,0)

(8,5)

w = 8
h = 5

int F = 2 * h - w;2 * (h - w) = -6



Example

x y F

0 0 2

1 1 -4

(0,0)

(8,5)

w = 8
h = 5

2 * (h - w) = -6
2 * h = 10



Example

x y F

0 0 2

1 1 -4

2 1 6

(0,0)

(8,5)

w = 8
h = 5

2 * (h - w) = -6
2 * h = 10



Example

x y F

0 0 2

1 1 -4

2 1 6

3 2 0

(0,0)

(8,5)

w = 8
h = 5

2 * (h - w) = -6
2 * h = 10



Example

x y F

0 0 2

1 1 -4

2 1 6

3 2 0

4 3 -6(0,0)

(8,5)

w = 8
h = 5

2 * (h - w) = -6
2 * h = 10



Example

x y F

0 0 2

1 1 -4

2 1 6

3 2 0

4 3 -6

5 3 4

6 4 -2

7 4 8

8 5 2

(0,0)

(8,5)

w = 8
h = 5

2 * (h - w) = -6
2 * h = 10



Relaxing restrictions
Lines in the other quadrants can be drawn by 
symmetrical versions of the algorithm.

We need to be careful that drawing from P to 
Q and from Q to P set the same pixels.

Horizontal and vertical lines are common 
enough to warrant their own optimised code.



Polygon filling
Determining which pixels are inside a polygon 
is a matter of applying the edge-crossing test 
(from week 3) for each possible pixel.



Shared edges
Pixels on shared edges between polygons need 
to be draw consistently regardless of the order 
the polygons are drawn, with no gaps.

We adopt a rule:

The edge pixels belong to the rightmost and/or 
upper polygon ie Do not draw rightmost or 
uppermost edge pixels



Scanline algorithm
Testing every pixel is very inefficient. 

We only need to check where the result 
changes value, i.e. when we cross an edge.

We proceed row by row: 

Calculate intersections incrementally.

Sort by x value.

Fill runs of pixels between intersections.



Active Edge List
We keep a list of active edges that overlap the 
current scanline.

Edges are added to the list as we pass the 
bottom vertex.

Edges are removed from the list as we pass the 
top vertex.

The edge intersection is updated incrementally.



Edges
For each edge in the AEL we store:

The x value of its crossing with the current row 
(initially the bottom x value)

The amount the x value changes from row-to-
row (1/gradient)

The y value of the top vertex.



Edge table
The (inactive) edge table is a lookup table index 
on the y-value of the lower vertex of the edge.

This allows for fast addition of new edges.

Horizontal edges are not added

In this list we store the initial values needed in 
the active edge list as well as the starting y 
value for the edge.



//For every scanline 

for (y = minY; y <= maxY; y++){  
   remove all edges that end at y 

   for (Edge e : active) {  
      e.x = e.x + e.inc;  
   } 

   add all edges that start at y – keep list 
sorted by x 

  for (int i=0; i < active.size; i+=2){ 

    fillPixels(active[i].x, active[i+1].x,y); 

  }  

}



Example

y in x inc y out

0 1 -0.25 4

0 5 1 1

0 9 -3 1

0 9 -0.4 5

3 2 -2 4

3 2 2.5 5(0,0)

Edge table



Example

x inc y out

1 -0.25 4

5 1 1

9 -3 1

9 -0.4 5

Active edge list

y=0



Example

x inc y out

1 -0.25 4

5 1 1

9 -3 1

9 -0.4 5

Active edge list

y=0



Example

x inc y out

0.75 -0.25 4

8.6 -0.4 5

Active edge list

y=1



Example

x inc y out

0.75 -0.25 4

8.6 -0.4 5

Active edge list

y=1



Example

x inc y out

0.5 -0.25 4

8.2 -0.4 5

Active edge list

y=2



Example

x inc y out

0.5 -0.25 4

8.2 -0.4 5

Active edge list

y=2



Example

x inc y out

0.25 -0.25 4

2 -2 4

2 2.5 5

7.8 -0.4 5

Active edge list

y=3



Example

x inc y out

0.25 -0.25 4

2 -2 4

2 2.5 5

7.8 -0.4 5

Active edge list

y=3



Example

x inc y out

4.5 2.5 5

7.4 -0.4 5

Active edge list

y=4



Example

x inc y out

4.5 2.5 5

7.4 -0.4 5

Active edge list

y=4



Example

x inc y out

Active edge list

y=5



OpenGL
OpenGL is optimised for implementation on 
hardware. 

Hardware implementations do not work well 
with variable length lists.

So OpenGL enforces polygons to be convex. 
This means the active edge list always has 2 
entries.

More complex polygons need to be tessellated 
into simple convex pieces.



Aliasing
Lines and polygons drawn with these algorithms 
tend to look jagged if the pixel size is too large.

This is another form of aliasing.



Aliasing
Lines and polygons drawn with these algorithms 
tend to look jagged if the pixel size is too large.

This is another form of aliasing.



Antialiasing
There are two basic approaches to eliminating 
aliasing (antialiasing).

Prefiltering is computing exact pixel values 
geometrically rather than by sampling.

Postfiltering is taking samples at a higher 
resolution (supersampling) and then averaging.



Prefiltering

0 0 0 0.2 0.7 0.5

0.1 0.4 0.8 0.9 0.5 0.1

0.5 0.7 0.3 0 0 0

For each pixel, compute the amount occupied 
and set pixel value to that percentage.



Prefiltering

0.9

For each pixel, compute the amount occupied 
and set pixel value to that percentage.



Postfiltering
Draw the line at a higher resolution and average 
(supersampling).



Postfiltering
Draw the line at a higher resolution and average 
(supersampling)



Postfiltering
Draw the line at a higher resolution and average 
(supersampling).



Comparing
Prefiltering

Postfiltering



Weighted postfiltering
It is common to apply weights to the samples 
to favour values in the center of the pixel.

1/16 1/16 1/16

1/16 1/2 1/16

1/16 1/16 1/16



Stochastic sampling
Taking supersamples in a grid still tends to 
produce noticeably regular aliasing effects.

Adding small amounts of jitter to the sampled 
points makes aliasing effects 
appear as visual noise.



Adaptive Sampling
Supersampling in large areas of uniform colour 
is wasteful.

Supersampling is most useful in areas of major 
colour change.

Solution: Sample recursively, at finer levels of 
detail in areas with more colour variance.



Adaptive sampling

Samples



Adaptive sampling



Adaptive sampling



Antialiasing
Prefiltering is most accurate but requires more 
computation.

Postfiltering can be faster.  Accuracy depends 
on how many samples are taken per pixel. More 
samples means larger memory usage.



OpenGL
// implementation dependant may not 
even do anything ☺ 

gl.glEnable(GL2.GL_LINE_SMOOTH);  
gl.glHint(GL2.GL_LINE_SMOOTH_HINT,GL2.
GL_NICEST); 

// also requires alpha blending 

gl.glEnable(GL2.GL_BLEND);  
gl.glBlendFunc(GL2.GL_SRC_ALPHA,  
       GL2.GL_ONE_MINUS_SRC_ALPHA); 



OpenGL
// full-screen multi-sampling 

GLCapabilities capabilities =  
     new GLCapabilities();  
capabilities.setNumSamples(4);  
capabilities.setSampleBuffers(tru
e); 

// ... 

gl.glEnable(GL.GL_MULTISAMPLE);


