
COMP3421
Particle Systems, Rasterisation

Particle systems
Some visual phenomena are best modelled as
collections of small particles.

Examples: rain, snow, fire, smoke, dust

Particle systems
Particles are usually represented as small
textured quads or point sprites – single vertices
with an image attached.

They are billboarded, i.e transformed so that
they are always face towards the camera.

Billboarding

Billboarding
An approximate form of billboarding can be
achieved by having polygons face a plane
perpendicular to the camera

Billboarding
We can apply this approximation by altering the
model-view matrix.

ix jx kx φx

iy jy ky φy

iz jz kz φz

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⇒

i 0 0 φx

0 j 0 φy

0 0 k φz

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

OpenGL
float modelview[16];

gl.glPushMatrix();

// get the current modelview matrix

gl.glGetFloatv(GL_MODELVIEW_MATRIX , modelview);

// modify the matrix

billboard(modelview);

gl.glLoadMatrixf(modelview)

drawObject(gl)

gl.glPopMatrix();

Particle systems
Particles are created by an emitter object and
evolve over time, usually changing position, size,
colour.

emitter

Particle evolution
Usually the rules for particle evolution are
simple local equations:

interpolate from one colour to another
over time

move with constant speed or acceleration.

To simulate many particles it is important these
update steps are kept simple and fast.

Particles on the GPU
Particle systems are well suited to
implementation as vertex shaders.

The particles can be represented as individual
point vertices.

A vertex shader can compute the position of
each particle at each moment in time.

Particle System
uniform vec3 vel;
uniform float g, t;

void main(){
 vec3 pos;
 pos.x = gl_Vertex.x + vel.x*t;
 pos.y = gl_Vertex.y + vel.y*t
 + g*t*t;
 pos.z = gl_Vertex.z + vel.z*t;

gl_Position =
 ModelViewProjectionMatrix*vec4(pos,1);
}

Exercise
Adapt the fireworks example to create a
tornado.

Solution
See code.

The graphics pipeline

Projection
transformation

Illumination

ClippingPerspective
division

ViewportRasterisation

Texturing Frame  
buffer

DisplayHidden surface
removal

Model-View Transform

Model
Transform

View  
Transform

Model

User

Rasterisation
Rasterisation is the process of converting lines
and polygons represented by their vertices into
fragments.

Fragments are like pixels but include color,
depth, texture coordinate. They may also never
make it to the screen due to hidden surface
removal or culling.

Rasterisation
This operation needs to be accurate and
efficient.

For this reason we prefer to use simple integer
calculations.

All are calculations are now in 2D screen space.

Drawing lines

(x0, y0)

(x1, y1)
(x, y)

Drawing lines - bad
double m = (y1-y0)/(double)(x1-
x0);

double b = y0 - m * x0;

for (int x = x0; x <= x1; x++) {

 int y = round(m * x + b);

 drawPixel(x, y);

}

Problems
• Floating point math is slow and

creates rounding errors
•Floating point multiplication, addition
and round for each pixel

• Code does not consider:
•Points are not connected if m > 1
•Divide by zero if x0 == x1 (vertical
lines)

•Doesn't work if x0 > x1

Example: y = 2x

Incremental – still bad
// incremental algorithm

double m = (y1-y0)/(double)(x1-x0);

double y = y0;

for (int x = x0; x <= x1; x++) {

 y += m; //one less multiplication

 drawPixel(x, round(y));

}

Bresenham's algorithm
We want to draw lines using only integer
calculations and avoid multiplications.

Such an algorithm is suitable for fast
implementation in hardware.

The key idea is that calculations are done
incrementally, based on the values for the
previous pixel.

Bresenham's algorithm
We shall assume to begin with that the line is in
the first octant.

I.e. x1 > x0, y1 > y0 and m <= 1

Bresenham’s Idea
For each x we work out which pixel we set next

The next pixel with the same y value

if the line passes below the midpoint

between the two pixels

Or the next pixel with an increased y value

if the line passes above the midpoint

between the two pixels

Bresenham's algorithm

P (xi, yi)

M

L (xi+1, yi)

U (xi+1, yi+1)

M1

M2

Pseudocode
int y = y0;

for (int x = x0; x <= x1; x++) {

 setPixel(x,y);

 M = (x + 1, y + 1/2)

 if (M is below the line)

 y++

}

Testing above/below
We’re on the line when:

w = x1− x0
h = y1− y0
m = h /w
y − y0 = m(x − x0)
0 = m(x − x0)− (y − y0)

Testing above/below
We’re above the line when:

0 < m(x − x0)− (y − y0)
0 < (h /w)(x − x0)− (y − y0)
0 < h(x − x0)−w(y − y0)
0 < 2h(x − x0)− 2w(y − y0)

Testing above/below

We call this value F

F(x, y) = 2h(x − x0)− 2w(y − y0)
F(x, y) < 0 ⇒ (x, y) is below line
F(x, y) > 0 ⇒ (x, y) is above line

Midpoints

P (xi, yi)

M M1

M2

Incrementally

F(M) = 2h(x0 +1− x0)− 2w(y0 + 1
2 − y0)

= 2h −w
F(M 1) = 2h(x0 + 2 − x0)− 2w(y0 + 1

2 − y0)
= F(M)+ 2h

F(M 2) = 2h(x0 + 2 − x0)− 2w(y0 + 3
2 − y0)

= F(M)+ 2h − 2w

Complete
int y = y0;  
int w = x1 - x0; int h = y1 - y0;  
int F = 2 * h - w;

for (int x = x0; x <= x1; x++) {  
 setPixel(x,y);

 if (F < 0) F += 2*h;  
 else {  
 F += 2*(h-w); y++;  
 }  
}

Example

x y F

0 0 2

(0,0)

(8,5)

w = 8
h = 5

int F = 2 * h - w;

Example

x y F

0 0 2

(0,0)

(8,5)

w = 8
h = 5

int F = 2 * h - w;2 * (h - w) = -6

Example

x y F

0 0 2

1 1 -4

(0,0)

(8,5)

w = 8
h = 5

2 * (h - w) = -6
2 * h = 10

Example

x y F

0 0 2

1 1 -4

2 1 6

(0,0)

(8,5)

w = 8
h = 5

2 * (h - w) = -6
2 * h = 10

Example

x y F

0 0 2

1 1 -4

2 1 6

3 2 0

(0,0)

(8,5)

w = 8
h = 5

2 * (h - w) = -6
2 * h = 10

Example

x y F

0 0 2

1 1 -4

2 1 6

3 2 0

4 3 -6(0,0)

(8,5)

w = 8
h = 5

2 * (h - w) = -6
2 * h = 10

Example

x y F

0 0 2

1 1 -4

2 1 6

3 2 0

4 3 -6

5 3 4

6 4 -2

7 4 8

8 5 2

(0,0)

(8,5)

w = 8
h = 5

2 * (h - w) = -6
2 * h = 10

Relaxing restrictions
Lines in the other quadrants can be drawn by
symmetrical versions of the algorithm.

We need to be careful that drawing from P to
Q and from Q to P set the same pixels.

Horizontal and vertical lines are common
enough to warrant their own optimised code.

Polygon filling
Determining which pixels are inside a polygon
is a matter of applying the edge-crossing test
(from week 3) for each possible pixel.

Shared edges
Pixels on shared edges between polygons need
to be draw consistently regardless of the order
the polygons are drawn, with no gaps.

We adopt a rule:

The edge pixels belong to the rightmost and/or
upper polygon ie Do not draw rightmost or
uppermost edge pixels

Scanline algorithm
Testing every pixel is very inefficient.

We only need to check where the result
changes value, i.e. when we cross an edge.

We proceed row by row:

Calculate intersections incrementally.

Sort by x value.

Fill runs of pixels between intersections.

Active Edge List
We keep a list of active edges that overlap the
current scanline.

Edges are added to the list as we pass the
bottom vertex.

Edges are removed from the list as we pass the
top vertex.

The edge intersection is updated incrementally.

Edges
For each edge in the AEL we store:

The x value of its crossing with the current row
(initially the bottom x value)

The amount the x value changes from row-to-
row (1/gradient)

The y value of the top vertex.

Edge table
The (inactive) edge table is a lookup table index
on the y-value of the lower vertex of the edge.

This allows for fast addition of new edges.

Horizontal edges are not added

In this list we store the initial values needed in
the active edge list as well as the starting y
value for the edge.

//For every scanline

for (y = minY; y <= maxY; y++){  
 remove all edges that end at y

 for (Edge e : active) {  
 e.x = e.x + e.inc;  
 }

 add all edges that start at y – keep list
sorted by x

 for (int i=0; i < active.size; i+=2){

 fillPixels(active[i].x, active[i+1].x,y);

 }

}

Example

y in x inc y out

0 1 -0.25 4

0 5 1 1

0 9 -3 1

0 9 -0.4 5

3 2 -2 4

3 2 2.5 5(0,0)

Edge table

Example

x inc y out

1 -0.25 4

5 1 1

9 -3 1

9 -0.4 5

Active edge list

y=0

Example

x inc y out

1 -0.25 4

5 1 1

9 -3 1

9 -0.4 5

Active edge list

y=0

Example

x inc y out

0.75 -0.25 4

8.6 -0.4 5

Active edge list

y=1

Example

x inc y out

0.75 -0.25 4

8.6 -0.4 5

Active edge list

y=1

Example

x inc y out

0.5 -0.25 4

8.2 -0.4 5

Active edge list

y=2

Example

x inc y out

0.5 -0.25 4

8.2 -0.4 5

Active edge list

y=2

Example

x inc y out

0.25 -0.25 4

2 -2 4

2 2.5 5

7.8 -0.4 5

Active edge list

y=3

Example

x inc y out

0.25 -0.25 4

2 -2 4

2 2.5 5

7.8 -0.4 5

Active edge list

y=3

Example

x inc y out

4.5 2.5 5

7.4 -0.4 5

Active edge list

y=4

Example

x inc y out

4.5 2.5 5

7.4 -0.4 5

Active edge list

y=4

Example

x inc y out

Active edge list

y=5

OpenGL
OpenGL is optimised for implementation on
hardware.

Hardware implementations do not work well
with variable length lists.

So OpenGL enforces polygons to be convex.
This means the active edge list always has 2
entries.

More complex polygons need to be tessellated
into simple convex pieces.

Aliasing
Lines and polygons drawn with these algorithms
tend to look jagged if the pixel size is too large.

This is another form of aliasing.

Aliasing
Lines and polygons drawn with these algorithms
tend to look jagged if the pixel size is too large.

This is another form of aliasing.

Antialiasing
There are two basic approaches to eliminating
aliasing (antialiasing).

Prefiltering is computing exact pixel values
geometrically rather than by sampling.

Postfiltering is taking samples at a higher
resolution (supersampling) and then averaging.

Prefiltering

0 0 0 0.2 0.7 0.5

0.1 0.4 0.8 0.9 0.5 0.1

0.5 0.7 0.3 0 0 0

For each pixel, compute the amount occupied
and set pixel value to that percentage.

Prefiltering

0.9

For each pixel, compute the amount occupied
and set pixel value to that percentage.

Postfiltering
Draw the line at a higher resolution and average
(supersampling).

Postfiltering
Draw the line at a higher resolution and average
(supersampling)

Postfiltering
Draw the line at a higher resolution and average
(supersampling).

Comparing
Prefiltering

Postfiltering

Weighted postfiltering
It is common to apply weights to the samples
to favour values in the center of the pixel.

1/16 1/16 1/16

1/16 1/2 1/16

1/16 1/16 1/16

Stochastic sampling
Taking supersamples in a grid still tends to
produce noticeably regular aliasing effects.

Adding small amounts of jitter to the sampled
points makes aliasing effects 
appear as visual noise.

Adaptive Sampling
Supersampling in large areas of uniform colour
is wasteful.

Supersampling is most useful in areas of major
colour change.

Solution: Sample recursively, at finer levels of
detail in areas with more colour variance.

Adaptive sampling

Samples

Adaptive sampling

Adaptive sampling

Antialiasing
Prefiltering is most accurate but requires more
computation.

Postfiltering can be faster. Accuracy depends
on how many samples are taken per pixel. More
samples means larger memory usage.

OpenGL
// implementation dependant may not
even do anything ☺

gl.glEnable(GL2.GL_LINE_SMOOTH);  
gl.glHint(GL2.GL_LINE_SMOOTH_HINT,GL2.
GL_NICEST);

// also requires alpha blending

gl.glEnable(GL2.GL_BLEND);  
gl.glBlendFunc(GL2.GL_SRC_ALPHA,  
 GL2.GL_ONE_MINUS_SRC_ALPHA);

OpenGL
// full-screen multi-sampling

GLCapabilities capabilities =  
 new GLCapabilities();  
capabilities.setNumSamples(4);  
capabilities.setSampleBuffers(tru
e);

// ...

gl.glEnable(GL.GL_MULTISAMPLE);

