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Global Lighting Part1: Ray tracing



The lighting equation we looked at earlier only 
handled direct lighting from sources:

We added an ambient fudge term to account 
for all other light in the scene.

Without this term, surfaces not facing a light 
source are black. 

Global Lighting



Story so far…



Global lighting
In reality, the light falling on a surface comes 
from everywhere. Light from one surface is 
reflected onto another surface and then 
another, and another, and...

Methods that take this kind of multi-bounce 
lighting into account are called global lighting 
methods.



Raytracing and Radiosity
There are two main methods for global lighting:

• Raytracing models specular reflection and 
refraction.

• Radiosity models diffuse reflection.

Both methods are computationally expensive 
and are rarely suitable for real-time rendering.



Ray Tracing – 1980s



Ray tracing - 2006



Ray tracing - 2016
https://www.youtube.com/watch?
v=uxE2SYDHFtQ

https://www.youtube.com/watch?v=uxE2SYDHFtQ


Ray tracing
Ray tracing is a different approach to rendering 
than the pipeline we have seen so far.

In the OpenGL pipeline we model objects as 
meshes of polygons which we convert into 
fragments and then display (or not).

In ray tracing, we model objects as implicit 
forms and compute each pixel by casting a ray 
and seeing which models it intersects.



Projective Methods vs 
RayTracing

• Projective Methods:
For each object
Find and update each 

pixel it influences

• Ray Tracing:
For each pixel
Find each object that
influences it and update

accordingly



Projective Methods vs 
RayTracing

They share lots of techniques:

shading models,

calculation of intersections, 

They also have differences:

projection and hidden surface removal come 
for ‘free’ in ray tracing
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• camera coordinate frame (i, j, k, E)

• near plane distance n

• world window 2w by 2h

• viewport (0, 0) to (c-1, r-1) pixels
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Location of Pixels
Where on the near plane does a given pixel 
(x,y) appear? (Lower left corners of pixels)
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Location of Pixels
Where on the near plane does a given pixel 
(x,y) appear? (Lower left corners of pixels)
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Rays
The point P(x,y) of pixel (x,y) is given by:

A ray from the camera through P(x,y) is given 
by:



Rays 

When:

t = 0, we get E (Eye/Camera)

t = 1, we get P(x,y) – the point on the near plane

t > 1 point in the world

t < 0 point behind the camera – not on ray

R(t) = E + t(P(x, y)− E)
= E + tv



Intersections
We want to compute where this ray intersects 
with objects in the scene. 

For basic shapes, we can do this with the equation 
of the shape in implicit form:

 
which we can also write as:

We substitute the formula for the ray into F and solve for 
t.



Intersecting a  
generic sphere

For example, a unit sphere at the origin has 
implicit form:

or:



Intersecting a  
generic sphere

We substitute the ray equation into F and solve 
for t:

 
 
which we can solve for t (as a quadratic).



Intersecting a  
generic sphere

We will get zero, one or two solutions:

F(P) = 0

t1 t2

t

No solutions = miss

One solution = graze

Two solutions = hit
R(t)



Exercise 
Where is the intersection of 

With the generic sphere?

r(t) = (3,2,3)+ (−3,−2,−3)t

a = v 2 = (−3,−2,−3) 2 = 22
b = 2(E ⋅v) = 2((3,2,3) ⋅(−3,−2,−3)) = −44

c = E 2 −1= (3,2,3) 2 −1= 21



Exercise…

Points are:

t = 44 ± −442 − 4 × 22 × 21
44

= 1± 0.2132
t1 = 0.7868
t2 = 1.2132

 (3,2,3) + 0.768(-3,-2,-3) = (0.64,0.43,0.64)
(3,2,3) + 1.2132(-3,-2,-3) = (-0.64,-0.43,-0.64)



Intersecting a  
generic plane

The x-y plane has implicit form:

 
Intersecting with the ray:



Intersecting a  
generic cube

To compute intersections with the generic cube 
(-1,-1,-1) to (1,1,1) we apply the Cyrus-Beck 
clipping algorithm encountered in week 3. 
Extending the algorithm to 3D is 
straightforward.

The same algorithm can be used to compute 
intersections with arbitrary convex polyhedral 
and meshes of convex faces.



Non-generic solids
We can avoid writing special-purpose code to 
calculate intersections with non-generic 
spheres, boxes, planes, etc.

Instead we can transform the ray and test it 
against the generic version of the shape.



Transformed spheres
We can transform a sphere by applying affine 
transformations

Let P be a point on the generic sphere.

We can create an arbitrary ellipsoid by 
transforming P to a new coordinate frame given 
by a matrix M. 



2D example

Generic circle  
F(P) = 0

P
Transformed circle

F(M-1Q) = 0

Q = MP



Non-generic solids
So in general if we apply a coordinate 
transformation M to a generic solid with 
implicit equation F(P) = 0 we get:  
 



Non-generic Solids
In other words:

• Apply the inverse transformation to the 
ray. 

• Do standard intersection with the generic 
form of the object. 

• Affine transformations preserve relative 
distances so values of t will be valid.



Ray Tracing Pseudocode
for each pixel (x,y): 

   v = P(x,y) - E  
   hits = {}; 

   for each object obj in the scene: 

      E' = M-1 * E  
      v' = M-1 * v 

      hits.add(obj.hit(E', v')) 

   hit = h in hits with min time > 1 

   if (hit is null)  
      set (x,y) to background  
   else  
      set (x,y) to hit.obj.colour(R(hit.time))



2D Example
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2D Example
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2D Example
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Shading & Texturing
When we know the object we hit and the point 
at which the hit occurs, we can compute the 
lighting equation to get the illumination. 

Likewise if the object has a texture we can 
compute the texture coordinates for the hit 
point to calculate its colour.

We combine these as usual to compute the 
pixel colour.



Antialiasing
We can smooth out aliasing artefacts in our 
image by supersampling. 

For each pixel we cast multiple rays with slight 
offsets and average the results.

Adaptive sampling is also appropriate here.



Optimisation
Testing collisions for more complex shapes 
(such as meshes) can be very time consuming.

In a large scene, most rays will not hit the 
object, so performing multiple expensive 
collision tests is wasteful.

We want fast ways to rule out objects which 
will not be hit.



Extents
Extents are bounding boxes or spheres which 
enclose an object.

Testing against a box or sphere is fast. 

If this test succeeds, then we proceed to test 
against the object.

We want tight fitting extents to minimise false 
positives.



Extents

Good fit Better fit

Good fit Poor fit



Computing extents
To compute a box extent for a mesh we simply 
take the min and max x, y and z coordinates 
over all the points.

To compute a sphere extent we find the 
centroid of all the vertices by averaging their 
coordinates. This is the centre of the sphere. 

The radius is the distance to the vertex farthest 
from this point.



Projection extents
Alternatively, we can build extents in screen 
space rather than world space.

A projection extent of an object is a bounding 
box which encloses all the pixels which would 
be in the image of the object (ignoring 
occlusions).

Pixels outside this box can ignore the object.



Projection extents
We can compute a projection extent of a mesh 
by projecting all the vertices into screen space 
and finding the min and max x and y values.

viewport

projection 
extent



BSPs
Another approach to optimisation is to build a 
BSP tree dividing the world into cells, where 
each cell contains a small number of objects.
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BSPs
Another approach to optimisation is to build a 
BSP tree dividing the world into cells, where 
each cell contains a small number of objects.
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Traversing the tree
In this case we do not want to traverse the 
entire tree. We only want to visit the leaves the 
ray passes through.
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Traversal algorithm
visit(E, v, node): (E eye) 

  if (node is leaf):  
     intersect ray with objs in leaf  
  else:  
     if (E on left):  
         visit(E, v, left)  
         other = right;  
     else:  
         visit(E, v, right)  
         other = left  
     endif 

     if (ray crosses boundary):  
         E' = intersect(E, v, boundary)  
         visit(E', v, other)  
     endif  
  endif



Traversing the tree
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Shadows
We can add shadows very simply.

At each hit point we cast a new ray towards 
each light source. These rays are called shadow 
feelers.

If a shadow feeler intersects an object before it 
reaches the source, then omit that source from 
the illumination equation for the point.



Self-shadows
We need to take care when the shadow is cast 
by the hit object itself.

The shadow feeler will always intersect the hit 
object at time t=0.

This intersection is only relevant if the light is 
on the opposite side of the object.
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Example
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PseudoCode
Trace primary ray 
if (hit is null)  
  set (x,y) to background  
else 
  set (x,y) = ambient color 
  Trace secondary ray to each light   
    if not blocked from light        

     (x,y) += contribution from light        



Reflections
We can now implement realistic reflections by 
casting further reflected rays.
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Reflections
Reflected rays can in turn be reflected off 
another object and another.

We usually write out code  
to stop after a fixed number  
of reflections to avoid 
infinite recursion. E

v



Transparency
We can also model transparent objects by 
casting a second ray that continues through the 
object.

E
v

r

t



Transparency
Transparency can also be applied reflexively, 
yielding a tree of rays.

Eye

Hit

Hit

Hit

Hit

Hit Hit Hit

v

t1 r1

t2 r2 t3 r3



Illumination
The illumination equation is extended to 
include reflected and transmitted components, 
which are computed recursively:

We will need material coefficients to attenuate 
the reflected and transmitted components 
appropriately.



Refraction of Light
When a light ray strikes a transparent object, a portion of the ray 
penetrates the object. The ray will change direction from dir to t 
if the speed of light is different in medium 1 and medium 2. Vector 
t lies in the same plane as dir and the normal m. 



Refraction
To handle transparency appropriately we need 
to take into account the refraction of light.

Light bends as it moves from one medium to 
another.  The change is described by Snell's Law:

where c1 and c2 are the speeds of light in each 
medium.



Example Snell's law
Air:  

c1 = 99.97% c

Glass:  
c2 ~= 55% c

n

θ2

θ1

θ1

θ2



Example
Suppose medium 2 is some form of glass in 
which light only travels 55% as fast as in medium 
1 which is the air. Suppose the angle of incidence 
of the light is 60 degrees from the normal. What 
is the angle of the transmitted light?

c2/c1 = 0.55

sin(theta2) = 0.55 * sin(60)

theta2 = 28.44 degrees



Refraction
The figure (a) shows light 
moving from the faster 
medium to the slower, 
and (b) shows light 
moving from the slower 
to the faster medium.  

The angles pair together 
in the same way in both 
cases; only the names 
change. 



Refraction
In (c) and (d), the larger angle 
has become nearly 900. The 
smaller angle is near the 
critical angle: when the 
smaller angle (of the slower 
medium) gets large enough, it 
forces the larger angle to 900. A 
larger value is impossible, so no 
light is transmitted into the 
second medium. This is called 
total internal reflection. 



Refraction
Different wavelengths of light move at different 
speeds (except in a vacuum). 

So for maximum realism, we should calculate 
different paths for different colours.

sunlight
raindrop

internal
reflection

rainbow



Refraction of Light
Simplest to model transparent objects so that their index 
of refraction does not depend on wavelength. 

To do otherwise would require tracing separate rays for 
each of the color components, as they would refract in 
somewhat different directions. 

This would be expensive computationally, and would still 
provide only an approximation, because an accurate model 
of refraction should take into account a large number of 
colors, not just the three primaries.



Exercise
How does milk look different to white paint?

Both are opaque.

Both are essentially pure white.

Milk is an example of scattering



Scattering
Scattering (or subsurface scattering) is when 
light refracts into an object that is non-uniform 
in its density and is reflected out at a different 
angle and position.



Scattering
Milk is a substance that has this property.

As is skin, leaves and wax.

Typically they are hard to render. 



Scattering



Scattering
We don’t really have time to cover this in more 
depth in this course. Read this if you want to 
know more (NOT EXAMINABLE).

http://graphics.ucsd.edu/~henrik/images/
subsurf.html

http://graphics.ucsd.edu/~henrik/images/subsurf.html


Raytracing Can’t Do
Basic recursive raytracing cannot do:

• Light bouncing off a shiny surface like a 
mirror and illuminating a diffuse surface

• Light bouncing off one diffuse surface to 
illuminate others

• Light transmitting then diffusing internally

Also a problem for rough specular reflection

• Fuzzy reflections in rough shiny objects



Raytracing Examples
https://www.youtube.com/watch?
v=h5mRRElXy-w

https://www.youtube.com/watch?v=pm85W-
f7xuk

https://www.youtube.com/watch?
v=XVZDH15TRro

https://www.youtube.com/watch?v=zx48ntkDai0

https://www.youtube.com/watch?v=h5mRRElXy-w
https://www.youtube.com/watch?v=pm85W-f7xuk
https://www.youtube.com/watch?v=pm85W-f7xuk
https://www.youtube.com/watch?v=pm85W-f7xuk
https://www.youtube.com/watch?v=XVZDH15TRro
https://www.youtube.com/watch?v=XVZDH15TRro
https://www.youtube.com/watch?v=XVZDH15TRro
https://www.youtube.com/watch?v=zx48ntkDai0


Volumetric ray tracing
We can also apply ray tracing to volumetric 
objects like smoke or fog or fire.

Such objects are transparent, but have different 
intensity and transparency throughout the 
volume.



Volumetric Ray Tracing
We represent the volume as two functions:

 

Typically these are represented as values in a 
3D array. Interpolation is used to find values at 
intermediate points.

These functions may in turn be computed 
based on density, lighting or other physical 
properties.



Sampling
We cast a ray from the camera through the 
volume and take samples at fixed intervals along 
the ray.

Camera

Background

Volume

thit



Sampling
We end up with (N+1) samples:



Alpha compositing
We now combine these values into a single 
colour by applying the alpha-blending equation.

Total
colour

at i

Local
colour

at i

Total
colour
at i+1

CN
N = CN

CN
i =α iCi + (1−α i )CN

i+1



Example
We have a background color of (0,1,0)

And 2 other samples that both have color (1,0.5,0.5) and 
alpha0 is 0.2 and alpha1  is 0.1. 

C2 = (0,1,0)
C1 = 0.1(1,0.5,0.5)+ 0.9(0,1,0) = (0.1,0.95,0.05)
C0 = 0.2(1,0.5,0.5)+ 0.8(0.1,0.95,0.05) = (0.28,0.86,0.14)



Alpha compositing
We can write a closed formula for the colour 
from a to b as:

We can compute this function from front to 
back, stopping early if the transparency term gets 
small enough that nothing more can be seen.

 



In OpenGL
Volumetric ray tracing (aka ray marching) does 
not require a full ray tracing engine.

It can be implemented in OpenGL as a 
fragment shader applied to a cube with a 3D 
texture.

https://www.shadertoy.com/view/XslGRr

See http://shadertoy.com/ for more examples.

https://www.shadertoy.com/view/XslGRr
http://shadertoy.com


Sources
http://en.wikipedia.org/wiki/Volume_ray_casting

http://graphics.ethz.ch/teaching/former/
scivis_07/Notes/Slides/03-raycasting.pdf

http://http.developer.nvidia.com/GPUGems/
gpugems_ch39.html

http://en.wikipedia.org/wiki/Volume_ray_casting
http://graphics.ethz.ch/teaching/former/scivis_07/Notes/Slides/03-raycasting.pdf
http://http.developer.nvidia.com/GPUGems/gpugems_ch39.html

