2. Dynamic Programming
 COMP6741: Parameterized and Exact Computation

Serge Gaspers
Semester 2, 2016

Contents

1 Dynamic Programming Across Subsets 1
1.1 Traveling Salesman Problem. 1
1.2 Coloring 2
1.3 Dominating Set in bipartite graphs 4
2 Further Reading 5

1 Dynamic Programming Across Subsets

- very general technique
- uses solutions of subproblems
- typically stored in a table of exponential size

1.1 Traveling Salesman Problem

Traveling Salesman Problem (TSP)

Input: \quad a set of n cities, the distance $d(i, j) \in \mathbb{N}$ between every two cities i and j, integer k
Question: Is there a permutation of the cities (a tour) such that the total distance when traveling from city to city in the specified order, and returning back to the origin, is at most k ?

Brute-force: Try all permutations of cities; $O^{*}(n!)$

Dynamic Programming for TSP
For a non-empty subset of cities $S \subseteq\{2,3, \ldots, n\}$ and city $i \in S$:

- Opt $[S ; i] \equiv$ length of the shortest path starting in city 1 , visits all cities in $S \backslash\{i\}$ and ends in i.

Then,

$$
\begin{aligned}
\operatorname{Opt}[\{i\} ; i] & =d(1, i) \\
\operatorname{Opt}[S ; i] & =\min \{\operatorname{Opt}[S \backslash\{i\} ; j]+d(j, i): j \in S \backslash\{i\}\}
\end{aligned}
$$

- For each subset S in order of increasing cardinality, compute Opt $[S ; i]$ for each i.
- Final solution:

$$
\min _{2 \leq j \leq n}\{\operatorname{OPT}[\{2,3, \ldots, n\} ; j]+d(j, 1)\}
$$

Theorem 1 (Held \& Karp '62). TSP can be solved in time $O\left(2^{n} n^{2}\right)=O^{*}\left(2^{n}\right)$.

- best known algo for TSP

1.2 Coloring

A k-coloring of a graph $G=(V, E)$ is a function $f: V \rightarrow\{1,2, \ldots, k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

```
COLORING
    Input:
    Question: Does G have a k}k\mathrm{ -coloring?
```


Maximal Independent Sets

- An independent set is maximal if it is not a subset of any other independent set.
- Examples:

Coloring and Maximal Independent Sets

Theorem 2 ([Moon, Moser '65], [Johnson, Yannakakis, Papadimitriou '88]). A graph on n vertices contains at most $3^{n / 3} \subseteq O\left(1.4423^{n}\right)$ maximal independent sets. Moreover, they can all be enumerated in time $O^{*}\left(3^{n / 3}\right)$.

A coloring is optimal if it uses a smallest number of colors.
Lemma 3 ([Lawler '76]). For any graph G, there exists an optimal coloring for G where one color class is a maximal independent set in G.

Dynamic Programming for Coloring

- $G[S] \equiv$ subgraph of G induced by the vertices in S

- $\operatorname{Opt}[S] \equiv$ minimum k such that $G[S]$ is k-colorable.
- Then,

$$
\begin{aligned}
\operatorname{Opt}[\emptyset] & =0 \\
\operatorname{Opt}[S] & =1+\min \{\operatorname{Opt}[S \backslash I]: I \text { maximal ind. set in } G[S]\}
\end{aligned}
$$

- go through the sets S in order of increasing cardinality
- to compute $\operatorname{Opt}[S]$, generate all maximal independent sets I of $G[S]$
- this can be done in time $|S|^{2} 3^{|S| / 3}$
- time complexity:

$$
\sum_{s=0}^{n}\binom{n}{s} s^{2} 3^{s / 3} \leq n^{2} \sum_{s=0}^{n}\binom{n}{s} 3^{s / 3}=n^{2}\left(1+3^{1 / 3}\right)^{n}=O\left(2.4423^{n}\right)
$$

[Recall the Binomial Theorem: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}$.]
Theorem 4 ([Lawler '76]). Coloring can be solved in time $O\left(2.4423^{n}\right)$.

- was best known algorithm for 25 years (until [Eppstein '01])
- current best: $O^{*}\left(2^{n}\right)$ [Bjørklund \& Husfeldt '06], [Koivisto '06]

k -Coloring for small k

```
k-ColORING
    Input: Graph G, integer k
    Question: Does G have a k}k\mathrm{ -coloring?
```

- $k \leq 2$: polynomial
- $k>2$: NP-complete

Algorithm for 3-Coloring

Theorem 5 ([Lawler '76]). 3-Coloring can be decided in time $O\left(1.4423^{n}\right)$.
Proof. For every maximal independent I set of G, check if $G-I$ is 2-colorable.
current best: $O\left(1.3289^{n}\right)$ [Eppstein '01]

Algorithm for 4-Coloring

Theorem 6. 4-Coloring can be decided in time $O\left(1.7851^{n}\right)$.
Proof. - By a generalization of Lemma 3, each 4-colorable graph G has a 4 -coloring where one color class is a maximal i.s. of size $\geq n / 4$.

- For each maximal independent set I of G of size at least $n / 4$, check if $G-I$ is 3 -colorable.
- Running time: $O\left(3^{n / 3} 1.3289^{3 n / 4}\right) \subseteq O\left(1.7851^{n}\right)$
current best: $O\left(1.7272^{n}\right)$ [Fomin, Gaspers, Saurabh '07]

1.3 Dominating Set in bipartite graphs

A dominating set in a graph $G=(V, E)$ is a subset of vertices $S \subseteq V$ such that each vertex of G is either in S or adjacent to a vertex in S.

Dominating	Set
Input:	Graph G, integer k
Question:	Does G have a dominating set of size k ?

A graph $G=(V, E)$ is bipartite if its vertex set can be partitioned into two independent sets.

Dominating	Set in Bipartite Graphs
Input:	Bipartite graph G, integer k
Question:	Does G have a dominating set of size $k ?$

Note: Dominating Set in Bipartite Graphs is NP-complete.

Algorithm for Dominating Set in Bipartite Graphs

Partition V into independent sets A and B, with $|B| \geq|A|$.
The algorithm has 2 phases:

- Preprocessing phase: compute for each $X \subseteq A$ a subset Opt $[X]$ which is a smallest subset of B that dominates X.
- Main phase: for each subset $X \subseteq A$, compute a dominating set D of G of minimum size such that $D \cap A=X$.

Main phase. For a vertex subset $X \subseteq A$, a dominating set D of G of minimum size such that $D \cap A=X$ is obtained by setting

$$
D:=X \cup(B \backslash N(X)) \cup \operatorname{Opt}[A \backslash(X \cup N(B \backslash N(X)))]
$$

if $A \backslash X$ contains no degree- 0 vertex. (If $A \backslash X$ contains a degree- 0 vertex, we skip this set X, because there is no dominating set D of G with $D \cap A=X$.)

Preprocessing phase. Let $B=\left\{b_{1}, \ldots, b_{|B|}\right\}$. We compute for each $X \subseteq A$ and integer $k, 0 \leq k \leq|B|$, a subset $\operatorname{Opt}[X, k] \subseteq\left\{b_{1}, \ldots, b_{k}\right\}$ which is defined as

- a smallest subset of $\left\{b_{1}, \ldots, b_{k}\right\}$ that dominates X if $X \subseteq N\left(\left\{b_{1}, \ldots, b_{k}\right\}\right)$, and
- B if $X \nsubseteq N\left(\left\{b_{1}, \ldots, b_{k}\right\}\right)$.

Note: $\operatorname{Opt}[X,|B|]=\operatorname{Opt}[X]$.
Base cases

$$
\begin{aligned}
\operatorname{Opt}[\emptyset, k] & =\emptyset & \forall k \in\{0, \ldots,|B|\} \\
\operatorname{Opt}[X, 0] & =B & \forall X, \emptyset \subsetneq X \subseteq A
\end{aligned}
$$

Dynamic Programming recurrence

$$
\operatorname{Opt}[X, k]=\left\{\begin{array}{l}
\operatorname{Opt}[X, k-1] \quad \text { if }|\operatorname{Opt}[X, k-1]|<1+\left|\operatorname{Opt}\left[X \backslash N\left(b_{k}\right), k-1\right]\right| \\
\left\{b_{k}\right\} \cup \operatorname{Opt}\left[X \backslash N\left(b_{k}\right), k-1\right] \quad \text { otherwise }
\end{array}\right.
$$

for each $X, \emptyset \subsetneq X \subseteq A$ and $k \in\{1, \ldots,|B|\}$.
Theorem 7 ([Liedloff '08]). Dominating Set in Bipartite Graphs can be solved in $O^{*}\left(2^{n / 2}\right)$ time, where n is the number of vertices of the input graph.

2 Further Reading

- Chapter 3, Dynamic Programming in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.

