Exercise Sheet 10 COMP6741: Parameterized and Exact Computation

2016, Semester 2

- 1. Show that the algorithm solving Comp-FVS from the lecture notes has running time $O^*(4^k)$.
- 2. A cluster graph is a graph where every connected component is a complete graph.

CLUSTER VERTEX DELETION

Input: Graph G = (V, E), integer k

Parameter: k

Question: Is there a set of vertices $S \subseteq V$ with $|S| \leq k$ such that G - S is a cluster graph?

Recall that G is a cluster graph iff G contains no induced P_3 .

• Design an $O^*(2^k)$ time algorithm for Cluster Vertex Deletion.

Hints

- (1) Show that the disjoint version of the problem can be solved in polynomial time: given (G = (V, E), S, k) such that |S| = k + 1 and G S is a cluster graph, find a $S^* \subseteq V \setminus S$ with $|S^*| \leq k$ such that $G S^*$ is a cluster graph.
- (2) Simplification rule for $v \in V \setminus S$ inducing a P_3 with 2 vertices in S. Reduce to maximum weight matching.