12. Exponential Time Hypothesis

COMP6741: Parameterized and Exact Computation

Serge Gaspers ${ }^{12}$
${ }^{1}$ School of Computer Science and Engineering, UNSW Australia
${ }^{2}$ Data61, Decision Sciences Group, CSIRO

Semester 2, 2016

Outline

(1) SAT and k-SAT
(2) Subexponential time algorithms
(3) ETH and SETH
(4) Algorithmic lower bounds based on ETH
(5) Algorithmic lower bounds based on SETH
(6) Further Reading

Outline

(1) SAT and k-SAT
(2) Subexponential time algorithms
(3) ETH and SETH

4 Algorithmic lower bounds based on ETH
(5) Algorithmic lower bounds based on SETH
(6) Further Reading

SAT

SAT

Input: \quad A propositional formula F in conjunctive normal form (CNF)
Parameter: $\quad n=|\operatorname{var}(F)|$, the number of variables in F
Question: Is there an assignment to $\operatorname{var}(F)$ satisfying all clauses of F ?

k-SAT

Input: \quad A CNF formula F where each clause has length at most k Parameter: $\quad n=|\operatorname{var}(F)|$, the number of variables in F Question: Is there an assignment to $\operatorname{var}(F)$ satisfying all clauses of F ?

Example:

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee \neg x_{4}\right)
$$

Algorithms for SAT

- Brute-force: $O^{*}\left(2^{n}\right)$

Algorithms for SAT

- Brute-force: $O^{*}\left(2^{n}\right)$
- ... after >50 years of SAT solving
(SAT association, SAT conference, JSAT journal, annual SAT competitions, ...)

Algorithms for SAT

- Brute-force: $O^{*}\left(2^{n}\right)$
- ... after >50 years of SAT solving
(SAT association, SAT conference, JSAT journal, annual SAT competitions, ...)
- fastest known algorithm for SAT: $O^{*}\left(2^{n \cdot(1-1 / O(\log m / n))}\right)$, where m is the number of clauses [Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]
- However: no $O^{*}\left(1.9999^{n}\right)$ time algorithm is known
- fastest known algorithms for 3-SAT: $O^{*}\left(1.3303^{n}\right)$ deterministic [Makino, Tamaki, Yamamoto, 2013] and $O^{*}\left(1.3071^{n}\right)$ randomized [Hertli, 2014]

Algorithms for SAT

- Brute-force: $O^{*}\left(2^{n}\right)$
- ... after >50 years of SAT solving
(SAT association, SAT conference, JSAT journal, annual SAT competitions, ...)
- fastest known algorithm for SAT: $O^{*}\left(2^{n \cdot(1-1 / O(\log m / n))}\right)$, where m is the number of clauses [Calabro, Impagliazzo, Paturi, 2006] [Dantsin, Hirsch, 2009]
- However: no $O^{*}\left(1.9999^{n}\right)$ time algorithm is known
- fastest known algorithms for 3-SAT: $O^{*}\left(1.3303^{n}\right)$ deterministic [Makino, Tamaki, Yamamoto, 2013] and $O^{*}\left(1.3071^{n}\right)$ randomized [Hertli, 2014]
- Could it be that 3-SAT cannot be solved in $2^{\circ(n)}$ time?
- Could it be that SAT cannot be solved in $O^{*}\left((2-\epsilon)^{n}\right)$ time for any $\epsilon>0$?

Outline

(1) SAT and k-SAT
(2) Subexponential time algorithms
(3) ETH and SETH
(a) Algorithmic lower bounds based on ETH
(5) Algorithmic lower bounds based on SETH
(6) Further Reading

NP-hard problems in subexponential time?

- Are there any NP-hard problems that can be solved in $2^{o(n)}$ time?

NP-hard problems in subexponential time?

- Are there any NP-hard problems that can be solved in $2^{o(n)}$ time?
- Yes. For example, Independent Set is NP-comlpete even when the input graph is planar (can be drawn in the plane without edge crossings). Planar graphs have treewidth $O(\sqrt{n})$ and tree decompositions of that width can be found in polynomial time ("Planar separator theorem" [Lipton, Tarjan, 1979]). Using a tree decomposition based algorithm, Independent Set can be solved in $2^{O(\sqrt{n})}$ time on planar graphs.

Outline

(1) SAT and k-SAT
(2) Subexponential time algorithms
(3) ETH and SETH
(4) Algorithmic lower bounds based on ETH
(5) Algorithmic lower bounds based on SETH
(6) Further Reading

ETH and SETH

Definition 1

For each $k \geq 3$, define δ_{k} to be the infinimum ${ }^{1}$ of the set of constants c such that k-SAT can be solved in $O^{*}\left(2^{c \cdot n}\right)$ time.

Conjecture 2 (Exponential Time Hyphothesis (ETH))

 $\delta_{3}>0$.
Conjecture 3 (Strong Exponential Time Hyphothesis (SETH))

$\lim _{k \rightarrow \infty} \delta_{k}=1$.
Notes: (1) ETH $\Rightarrow 3$-SAT cannot be solved in $2^{o(n)}$ time. SETH \Rightarrow SAT cannot be solved in $O^{*}\left((2-\epsilon)^{n}\right)$ time for any $\epsilon>0$.

[^0]
Outline

(1) SAT and k-SAT

(2) Subexponential time algorithms
(3) ETH and SETH

4 Algorithmic lower bounds based on ETH

(5) Algorithmic lower bounds based on SETH

(6) Further Reading

Algorithmic lower bounds based on ETH

- Suppose ETH is true
- Can we infer lower bounds on the running time needed to solve other problems?

Algorithmic lower bounds based on ETH

- Suppose ETH is true
- Can we infer lower bounds on the running time needed to solve other problems?
- Suppose there is a polynomial-time reduction from 3-SAT to a graph problem Π, which constructs an equivalent instance where the number of vertices of the output graph equals the number of variables of the input formula, $|V|=|\operatorname{var}(F)|$.
- Using the reduction, we can conclude that, if Π has an $O^{*}\left(2^{o(|V|)}\right)$ time algorithm, then 3-SAT has an $O^{*}\left(2^{o(|\operatorname{var}(F)| \mid)}\right)$ time algorithm, contradicting ETH.
- Therefore, we conclude that Π has no $O^{*}\left(2^{o(|V|)}\right)$ time algorithm unless ETH fails.

Sparsification Lemma

Issue: Many reductions from 3-SAT create a number of vertices / variables / elements that are related to the number of clauses of the 3-SAT instance.

Sparsification Lemma

Issue: Many reductions from 3-SAT create a number of vertices / variables / elements that are related to the number of clauses of the 3-SAT instance.

Theorem 4 (Sparsification Lemma, [Impagliazzo, Paturi, Zane, 2001])

For each $\varepsilon>0$ and positive integer k, there is a $O^{*}\left(2^{\varepsilon \cdot n}\right)$ time algorithm that takes as input a k-CNF formula F with n variables and outputs an equivalent formula $F^{\prime}=\bigvee_{i=1}^{t} F_{i}$ that is a disjunction of $t \leq 2^{\varepsilon n}$ formulas F_{i} with $\operatorname{var}\left(F_{i}\right)=\operatorname{var}(F)$ and $\left|\operatorname{cla}\left(F_{i}\right)\right|=O(n)$.

3-SAT with a linear number of clauses

Corollary 5

ETH \Rightarrow 3-SAT cannot be solved in $O^{*}\left(2^{o(n+m)}\right)$ time where m denotes the number of clauses of F.

Observation: Let A, B be parameterized problems and f, g be non-decreasing functions.
Suppose there is a polynomial-parameter transformation from A to B such that if the parameter of an instance of A is k, then the parameter of the constructed instance of B is at most $g(k)$. Then an $O^{*}\left(2^{o(f(k))}\right)$ time algorithm for B implies an $O^{*}\left(2^{o(f(g(k)))}\right)$ time algorithm for A.

More general reductions are possible

Definition 6 (SERF-reduction)

A SubExponential Reduction Family from a parameterized problem A to a parameterized problem B is a family of Turing reductions from A to B (i.e., an algorithm for A, making queries to an oracle for B that solves any instance for B in constant time) for each $\varepsilon>0$ such that

- for every instance I for A with parameter k, the running time is $O^{*}\left(2^{\varepsilon k}\right)$, and
- for every query I^{\prime} to B with parameter k^{\prime}, we have that $k^{\prime} \in O(k)$ and $\left|I^{\prime}\right|=|I|^{O(1)}$.

Note: If A is SERF-reducible to B and A has no $2^{o(k)}$ time algorithm, then B has no $2^{o\left(k^{\prime}\right)}$ time algorithm.

Vertex Cover has no subexponential algorithm

Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT. For simplicity, assume all clauses have length 3 .
3-CNF Formula $F=(u \vee v \vee \neg y) \wedge(\neg u \vee y \vee z) \wedge(\neg v \vee w \vee x) \wedge(x \vee y \vee \neg z)$

Vertex Cover has no subexponential algorithm

Polynomial-parameter transformation from 3-SAT.
For simplicity, assume all clauses have length 3 .
3-CNF Formula $F=(u \vee v \vee \neg y) \wedge(\neg u \vee y \vee z) \wedge(\neg v \vee w \vee x) \wedge(x \vee y \vee \neg z)$

For a 3-CNF formula with n variables and m clauses, we create a VERTEX Cover instance with $|V|=2 n+3 m,|E|=n+6 m$, and $k=n+2 m$.

Vertex Cover has no subexponential algorithm II

Theorem 7

$E T H \Rightarrow$ Vertex Cover has no $2^{o(|V|)}$ time algorithm.

Theorem 8

$E T H \Rightarrow$ Vertex Cover has no $2^{o(|E|)}$ time algorithm.

Theorem 9

ETH \Rightarrow Vertex Cover has no $2^{o(k)}$ time algorithm.

Outline

(1) SAT and k-SAT

(2) Subexponential time algorithms
(3) ETH and SETH

4 Algorithmic lower bounds based on ETH
(5) Algorithmic lower bounds based on SETH
(6) Further Reading

Hitting Set

Recall: A hitting set of a set system $\mathcal{S}=(V, H)$ is a subset X of V such that X contains at least one element of each set in H, i.e., $X \cap Y \neq \emptyset$ for each $Y \in H$.

```
elts-Hitting SET
    Input: A set system S = (V,H) and an integer k
    Parameter: }n=|V
    Question: Does S have a hitting set of size at most k?
```


SETH-lower bound for Hitting Set

CNF Formula $F=(u \vee v \vee \neg y) \wedge(\neg u \vee y \vee z) \wedge(\neg v \vee w \vee x) \wedge(x \vee y \vee \neg z)$ Inidence graph of equivalent Hitting Set instance:

For a CNF formula with n variables and m clauses, we create a Hitting Set instance with $|V|=2 n$ and $k=n$.

SETH-lower bound for Hitting Set

Theorem 10

SETH \Rightarrow Hitting Set has no $O^{*}\left((2-\varepsilon)^{|V| / 2}\right)$ time algorithm for any $\varepsilon>0$.
Note: With a more ingenious reduction, one can show that Hitting Set has no $O^{*}\left((2-\varepsilon)^{|V|}\right)$ time algorithm for any $\varepsilon>0$ under SETH.

Exercise

A dominating set of a graph $G=(V, E)$ is a set of vertices $S \subseteq V$ such that $N_{G}[S]=V$.

```
vertex-Dominating Set
    Input: A graph G}=(V,E)\mathrm{ and an integer }
    Parameter: }n=|V
    Question: Does G have a dominating set of size at most k
```

- Prove that $\mathrm{ETH} \Rightarrow$ vertex-Dominating Set has no $2^{o(n)}$ time algorithm.

Outline

(1) SAT and k-SAT
(2) Subexponential time algorithms
(3) ETH and SETH

4 Algorithmic lower bounds based on ETH
(5) Algorithmic lower bounds based on SETH
(6) Further Reading

Further Reading

- Chapter 14, Lower bounds based on the Exponential-Time Hypothesis in Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, MichałPilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- Section 11.3, Subexponential Algorithms and ETH in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.
- Section 29.5, The Sparsification Lemma in

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.

[^0]: ${ }^{1}$ The infinimum of a set of numbers is the largest number that is smaller or equal to each number in the set. E.g., the infinimum of $\{\varepsilon \in \mathbb{R}: \varepsilon>0\}$ is 0 .

