
Business Process Modelling and Implementation
BPEL: Business Process Execution Language

Helen Paik

School of Computer Science and Engineering
University of New South Wales

References:

BPEL 2.0: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

Essential Business Process Modelling, Michael Havey, O’Reilly, 2005

Acknowledgement: The slides are adapted from COMP9322 lectures in previous sessions, which were originally prepared
by Dr. Helen H-Y Paik, Dr. Sherif Sakr. This semester, we also refer to lecture materials created by Prof. Fabio Casati

(University of Trento, Italy) and Dr. Marcello La Rosa (QUT, Brisbane) for their respective SOA courses.

Week 4

H. Paik (CSE, UNSW) BPM Week 4 1 / 60

So far through the Web services topics ...

Web Services as a standard way of invoking remote components (SOAP,
WSDL, UDDI and implementation platforms like Apache CXF)

Application integration requires more than the ability to conduct simple
interactions via invoking remote operations. It requires coordinating complex
interactions amongst the services involved → coordination logic

H. Paik (CSE, UNSW) BPM Week 4 2 / 60

Business Processes and Web Services

A business process acts as a ‘coordinating service’ for the Web services. It
coordinates all necessary service calls according to some process logic (i.e., a path
in a workflow).

Customer
(Procurement

Service)
Supplier

(Order Management Service)

Warehouse
(Inventory

Control Service)

Finance
(Invoice Service)

In
te

rfa
ce In

te
rfa

ce
In

te
rfa

ce

<operation>
 <input message=“rfQ”\>
 <output message=“quote”\>
<\operation>

<operation>
<input message=“availabilityReq”\>
<output message=“availability”\>

<\operation>

Figure from Dr. Marcello La Rosa’s course note, QUT, Brisbane

H. Paik (CSE, UNSW) BPM Week 4 3 / 60

SUPPLIER

Customer
(Procurement

Service)

(Order Management Service)

Warehouse
(Inventory

Control Service)

Finance
(Invoice Service)

In
te

rfa
ce In

te
rfa

ce
In

te
rfa

ce

<operation>
 <input message=“rfQ”\>
 <output message=“quote”\>
<\operation>

<operation>
<input message=“availabilityReq”\>
<output message=“availability”\>

<\operation>

receive
RFQ

send
availabilityReq

receive
availability

send
quote

receive
order

send
shipmentOrder

send
invoiceReq

send
rejectRFQ

Business Process - A Coordinating Service

H. Paik (CSE, UNSW) BPM Week 4 4 / 60

Interacting with a Service Interface

Let’s leave the BPM aside for a moment and consider the concept of
interacting with a Web service - or a service interface.

Generally speaking, an interaction with a service interface could be more
complex than calling a single operation.
e.g., A simple buying process:

customer
(client)

supplier
(Web service)

1: requestQuote

2: orderGoods

3: makePayment

The interface description - WSDL doesn’t tell you how the client should
interact with the service

H. Paik (CSE, UNSW) BPM Week 4 5 / 60

Interacting with a Service Interface

Note that these interactions have to be performed in a given order. This
order is referred to as ’conversation’.

The conversation affects how the client is implemented, i.e., the business
logic of the client must support the conversation (e.g., allowed to skip a
quote?)

Web Service Coordination Protocols: a collection of valid
conversations supported by a service interface is called ’co-ordination
protocol’

A co-ordination protocol detail can be given to the client beforehand
... the client can work out which conversations are allowed

Two types of Web service coordinations: orchestration and
choreography

To discuss this, let’s look at a conversation involving multiple Web
services.

H. Paik (CSE, UNSW) BPM Week 4 6 / 60

Conversations among Multiple Web Services

eg. Procurement Protocols - global view

Supplier
Web

Service

Customer
Web

Service

1: requestQuote

2: orderGoods
4: confirmOrder
5: makePayment

Warehouse
Web

Service

6: orderShipment

3: checkShipAvailable

9: confirmShipment8: confirmShipment

7: getShipmentDetail

choreography: multi-party collaboration
H. Paik (CSE, UNSW) BPM Week 4 7 / 60

Two view points of coordinations: external vs. internal

eg. Procurement Protocols - one/single controller view

Customer

Supplier

co
nv

er
sa

tio
n

co
nt

ro
lle

r

business
process
engine

Warehouse

1: requestQuote

2: orderGoods
4: confirmOrder

5: makePayment

Supplier’s view point

3. check availability

confirm

orchestration: single executable processes – Web service composition

H. Paik (CSE, UNSW) BPM Week 4 8 / 60

WS Orchestration vs. Choreography

Orchestration describes how Web services can interact with each
other at the message level, including the business logic and execution
order of the interactions from the perspective and under control of a
single endpoint (single party).

Choreography is associated with the public (globally visible) message
exchanges, rules of interaction and agreements that occur between
multiple business process endpoints.

Choreography tracks the sequence of messages that may involve
multiple parties and multiple sources, and described from the
perspectives of all parties (common view).

orchestration: single executable processes – Web service composition
choreography: multi-party collaboration – industry B2B standards ...

H. Paik (CSE, UNSW) BPM Week 4 9 / 60

Web Service Composition

Web service composition is a coordination/orchestration implementation
technique.

eg., A procurement scenario. A client;

1 Sends requestQuotes to two different suppliers.
2 Chooses the supplier that offers a better deal.
3 Obtains an approval from its finance department
4 Sends an order and then makes the payment

customer
(client)

supplier
(Web Service)

another supplier
(Web Service)

approval
(Web Service)

requestQuote

orderGoods

makePayment

requestQuote
notifyPayment

H. Paik (CSE, UNSW) BPM Week 4 10 / 60

Web Service Composition

Important observations:

The suppliers are Web services, as is the internal application that
performs approval.

Hence, the business logic of the client is realised by ‘composing’
multiple services (i.e., orchestrating the interaction among multiple
services)

This is the core concept of Web service composition: Write a program
by calling on other services (i.e., a new application implemented by
integrating other applications)

Web Service composition can be iterated → Consider Web Services as
building blocks that can be assembled. It allows building of a complex
applications by progressively aggregating components.

H. Paik (CSE, UNSW) BPM Week 4 11 / 60

Web Service Composition

e.g., the client program itself can be a procurement ’Web Service’ to other
clients

supply
chain

inventory
management

accounting

procurement

approvalstocktake data mining
supplier

another
supplier

An Integrated Application

Once it becomes a web service, it may be integrated into a bigger
application as a component that provides procurement functionality.

This allows to maintain higher levels of abstraction (i.e., the ’composer of
Web services’ does not necessarily know the “inside” of each service

H. Paik (CSE, UNSW) BPM Week 4 12 / 60

Web Service Composition

Things to note about Web Service Composition:

Web services are not like application libraries where you have to be
compiled and linked as part of an application.

The basic components (individual services) remains separated (ie., exist
independently) from the composite service.

A composition of web services mainly involves specifying which
services need to be invoked, in what order and how to handle
exceptional situations, etc.

can be seen as Web service-based workflow

H. Paik (CSE, UNSW) BPM Week 4 13 / 60

Web Service Composition Development

A Web service composition development environment → BPM technology
gives a method to model and execute Web service composition.

composition model and langauge: enabling the specification of the
services to be combined, the order in which the different services are
to be invoked, and the way in which service invocation parameters are
determined. The specification is referred to as composition schema.

graphical user interface: an interface through which designers can
specify a composition schema by dragging and dropping Web services
into a canvas. The graphs and other descriptive information are them
translated into textual specifications (ie., the composition schema)

run-time environment composition engine that executes the
business logic of the composite service.

H. Paik (CSE, UNSW) BPM Week 4 14 / 60

Web Service Composition Development

External services

graphical programming
environment

WS
composition

Schema
Developer

Schema
DefinitionsSchema
Definitions

Schema
and WS

Definitions

SOAP
engine

Web service composition enrivonment

other
service

other
service

other
service

run-time environment
Internal

SOAP engine

SOAP
engine

SOAP
engine

Conversation
controller

other
service other

service other
service

H. Paik (CSE, UNSW) BPM Week 4 15 / 60

A Graphical Development Env. (e.g., Eclipse plugin)

H. Paik (CSE, UNSW) BPM Week 4 16 / 60

Business Process Execution Language (BPEL)

BPEL is one of the most popular standards for Web Service composition
(referred to as “business process” in this language). BPEL Specification:
OASIS standard - http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

BPEL is an XML programming
language. Two types of files:

WSDL files: specifying
interfaces of the services
implemented by and called
by the process

BPEL files: each encodes, in
XML form, the definition of
a process including activities,
routing options, etc.

BPEL in WS-* Stack

Transports

Messaging

Description and Discovery

Transactions Reliability Security

Business Processes Management

First Generation WS

Second Generation WS
http://www.ibm.com/developerworks/webservices/standards/

H. Paik (CSE, UNSW) BPM Week 4 17 / 60

BPEL : Basic Activities

H. Paik (CSE, UNSW) BPM Week 4 18 / 60

BPEL : Structured Activities

H. Paik (CSE, UNSW) BPM Week 4 19 / 60

BPEL : Structuring Activities (Nesting)

H. Paik (CSE, UNSW) BPM Week 4 20 / 60

BPEL concepts: .bpel (process) and .wsdl (interfaces)

The result of a composition (business process) using BPEL is
recursively published as WSDL.
BPEL processes interact with WSDL services exposed by business
partners

H. Paik (CSE, UNSW) BPM Week 4 21 / 60

BPEL concepts: partners and partner link types

BPEL, as the controller in the orchestration, is ’consumed’ by services and also
’consumes’ services.

{ {
Partner Link Partner Link

H. Paik (CSE, UNSW) BPM Week 4 22 / 60

BPEL concepts: partners and partner link types

partners are the actors in a
composition who play roles.

partner link types characterizes
the conversational relationship
between two services by defining
the “roles” played by each of
the services

Each role in a partner link type
is linked with a WSDL port type

Web services playing the role are
required to support such
operations

in WSDL

in BPEL

H. Paik (CSE, UNSW) BPM Week 4 23 / 60

BPEL Design - I declare what I need and offer

H. Paik (CSE, UNSW) BPM Week 4 24 / 60

BPEL Basics via a Loan Approval Process Example

Loan Approval service is a composed Web service. Here is the external
view of the loan approval process

Web Service

Loan Approval
Process Service

<receive>

<reply>

PortType:
LoanApprovalPT

H. Paik (CSE, UNSW) BPM Week 4 25 / 60

BPEL Basics via a Loan Approval Process Example

Internal view of the loan approval process

Web Service

A Financial
Institution’s
Web Service

<receive>

<reply>

PortType:
LoanApprovalPT

Partner: LoanApprover
Role: approver

<process>

<sequence>

<receive>

<invoke>

<reply>

Web Service

Loan Approval
Process
Service

<receive>

<reply>

PortType:
LoanApprovalPT

inside the Loan Approval Process

Client

H. Paik (CSE, UNSW) BPM Week 4 26 / 60

First, the WSDL files involved ...

This WSDL declares the messages used in the service. It is declared
separately so that it can be shared by other WSDLs.

loandefinition.wsdl:

<definitions

targetNamespace="http://tempuri.org/services/loandefinitions"

xmlns:tns="http://tempuri.org/services/loandefinitions"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="creditInformationMessage">

<part name="firstName" type="xsd:string"/>

<part name="name" type="xsd:string"/>

<part name="amount" type="xsd:integer"/>

</message>

<message name="loanRequestErrorMessage">

<part name="errorCode" type="xsd:integer"/>

</message>

</definitions>

H. Paik (CSE, UNSW) BPM Week 4 27 / 60

First, the WSDL files involved ...

This is the WSDL for the Loan Approver Service (loanapprover.wsdl) - i.e.,
the partner

<definitions
targetNamespace="http://tempuri.org/services/loanapprover"
xmlns:tns="http://tempuri.org/services/loanapprover"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:loandef="http://tempuri.org/services/loandefinitions"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<import namespace="http://tempuri.org/services/loandefinitions"
location="http://localhost:8080/bpws-samples/loanapproval/

loandefinitions.wsdl"/>
<message name="approvalMessage">

<part name="accept" type="xsd:string"/>
</message>
<portType name="loanApprovalPT">

<operation name="approve">
<input message="loandef:creditInformationMessage"/>
<output message="tns:approvalMessage"/>
<fault name="loanProcessFault"

message="loandef:loanRequestErrorMessage"/>
</operation>

</portType>

<binding ...> ... </binding>

<service name="LoanApprover">....</service>

</definitions>
H. Paik (CSE, UNSW) BPM Week 4 28 / 60

First, the WSDL files involved ...

This is the WSDL for the Loan Approval Process Service
(loanapproval.wsdl) - i.e., the service provider itself

<definitions

targetNamespace="http://loans.org/wsdl/loan-approval"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"

xmlns:lns="http://loans.org/wsdl/loan-approval"

xmlns:apns="http://tempuri.org/services/loanapprover">

<import namespace="http://tempuri.org/services/loanapprover"

location="http://localhost:8080/bpws-samples/loanapproval/

loanapprover.wsdl"/>

<import namespace="http://tempuri.org/services/loandefinitions"

location="http://localhost:8080/bpws-samples/loanapproval/

loandefinitions.wsdl"/>

<plnk:partnerLinkType name="loanApprovalLinkType">

<plnk:role name="approver">

<plink:portType name="apns:loanApprovalPT"/>

</plnk:role>

</plnk:partnerLinkType>

<service name="loanapprovalServiceBP"/>

</definitions>

H. Paik (CSE, UNSW) BPM Week 4 29 / 60

Creating the BPEL process definition: loanapproval.bpel

Create the BPEL process: (Start)

<process name="loanApprovalProcess" // all namespaces

targetNamespace="http://acme.com/simpleloanprocessing"

xmlns:loandef="http://tempuri.org/services/loandefinitions"

xmlns:apns="http://tempuri.org/services/loanapprover" >

Define Partners:

<partners>

<partner name="customer"

partnerLinkType="lns:loanApproveLinkType"

myRole="approver"/>

<partner name="approver"

partnerLinkType="lns:loanApprovalLinkType"

partnerRole="approver"/>

</partners>

Define variables:

<variables>

<variable name="request"

messageType="loandef:CreditInformationMessage"/>

<variable name="approvalInfo"

messageType="apns:approvalMessage"/>

</variables>
H. Paik (CSE, UNSW) BPM Week 4 30 / 60

Activities in the process

Interactions: Receive, Invoke and Reply ...

<sequence>

<receive name="receive1" partner="customer"

portType="apns:loanApprovalPT"

operation="approve" variable="request"

createInstance="yes">

</receive>

<invoke name="invokeapprover"

partner="approver"

portType="apns:loanApprovalPT"

operation="approve"

inputVariable="request"

outputVariable="approvalInfo">

</invoke>

<reply name="reply" partner="customer"

portType="apns:loanApprovalPT"

operation="approve" variable="approvalInfo">

</reply>

</sequence>

</process>

H. Paik (CSE, UNSW) BPM Week 4 31 / 60

BPEL through Examples

Example 1: (To learn: flow, links, conditions and assign activity:) Let us
add an extra business logic and an additional service to the simple loan
approval example.

receive
LoanRequest

invoke
LoanAssessorService

request < $10,000

Risk = HighRisk = Low

invoke
LoanApproverService

request > $10,000

Assign
LoanApproved

replyTo
LoanRequestor

does full review of
the application

performs
Risk Assessment

www-128.ibm.com/developerworks/webservices/library/ws-bpelcol5/

H. Paik (CSE, UNSW) BPM Week 4 32 / 60

www-128.ibm.com/developerworks/webservices/library/ws-bpelcol5/

BPEL Example 1

Internal view of the composition:

loan
assessor

loan
approver

<process>

<receive>

<invoke> <invoke>

<assign>

<reply>

a<10000 a>=10000
risk='high'

risk='low'

riskAssessmentPT loanApprovalPT

H. Paik (CSE, UNSW) BPM Week 4 33 / 60

BPEL Example 1

A new service: Loan Assessor (loanassessor.wsdl)

<definitions targetNamespace="http://tempuri.org/services/loanassessor"
xmlns:tns="http://tempuri.org/services/loanassessor"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:loandef="http://tempuri.org/services/loandefinitions"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<import namespace="http://tempuri.org/services/loandefinitions"
location="http://localhost:8080/bpws4j-samples/loanapproval/
loandefinitions.wsdl"/>

<message name="riskAssessmentMessage">
<part name="risk" type="xsd:string"/>

</message>
<portType name="riskAssessmentPT">

<operation name="check">
<input message="loandef:creditInformationMessage"/>
<output message="tns:riskAssessmentMessage"/>
<fault name="loanProcessFault"

message="loandef:loanRequestErrorMessage"/>
</operation>

</portType>
<binding ...> ... </binding>

<service name="LoanAssessor">....</service>
</definitions>

H. Paik (CSE, UNSW) BPM Week 4 34 / 60

BPEL Example 1

The new service’s role and port type: assessor, riskAssessmentPT

<plnk:partnerLinkType name="riskAssessmentLinkType">

<plnk:role name="assessor">

<portType name="asns:riskAssessmentPT"/>

</plnk:role>

</plnk:partnerLinkType>

(Added into loanapproval.wsdl)

In Loan Approval BPEL specification (loanapproval.bpel):

adding the new partner

defining a new variable to store the riskAssessment result.

H. Paik (CSE, UNSW) BPM Week 4 35 / 60

BPEL Example 1

<process name="loanApprovalProcess"
targetNamespace="http://acme.com/simpleloanprocessing"
xmlns="http://schemas.xmlsoap.org/ws/2002/07/business-process/"
xmlns:lns="http://loans.org/wsdl/loan-approval"
xmlns:loandef="http://tempuri.org/services/loandefinitions"
xmlns:apns="http://tempuri.org/services/loanapprover"
xmlns:asns="http://tempuri.org/services/loanassessor">

<partners>
<partner name="customer"

partnerLinkType="lns:loanApproveLinkType"
myRole="approver"/>

<partner name="approver"
partnerLinkType="lns:loanApprovalLinkType"
partnerRole="approver"/>

<partner name="assessor"
partnerLinkType="lns:riskAssessmentLinkType"
partnerRole="assessor"/>

</partners>
<variables>

<variable name="request"
messageType="loandef:CreditInformationMessage"/>

<variable name="riskAssessment"
messageType="asns:riskAssessmentMessage"/>

</variables>
<!-- activities to follow next -->
</process>

H. Paik (CSE, UNSW) BPM Week 4 36 / 60

BPEL Example 1

Now define the order of the activities:

Flow and links:

By default, Flow lets the activities to be run concurrently

Flow may contain ”links” that are designed to control the flow of
activity executions

<links> connects activities together and consists of one or more
<link> element

An individual <link> connects two activities.

<link> and activities named in the link are enclosed by <flow>

Definition of each activity contained in a link needs to identify
whether it is ’source’ or ’target’ of a link.

H. Paik (CSE, UNSW) BPM Week 4 37 / 60

BPEL: Flow and Links

H. Paik (CSE, UNSW) BPM Week 4 38 / 60

BPEL Example 1

<flow>
<links>

<link name="receive-to-assess"/>
<link name="receive-to-approval"/>

</links>
<receive name="receive1" partner="customer"

portType="apns:loanApprovalPT"
operation="approve" variable="request" createInstance="yes">

<source linkName="receive-to-assess" .../>
<source linkName="receive-to-approval" .../>

</receive>
<invoke name="invokeAssessor" partner="assessor"

portType="asns:riskAssessmentPT"
operation="check" inputVariable="request"
outputVariable="riskAssessment">

<target linkName="receive-to-assess"/>
<source linkName="assess-to-setMessage" .../>
<source linkName="assess-to-approval" .../>

</invoke>
<invoke name="invokeapprover" partner="approver"

portType="apns:loanApprovalPT"
operation="approve"
inputVariable="request"
outputVariable="approvalInfo">

<target linkName="receive-to-approval"/>
</invoke>

</flow>

H. Paik (CSE, UNSW) BPM Week 4 39 / 60

BPEL Example 1

Linking activities ...

An activity A may have outgoing links (when A is the source of the links)
and incoming links (when A is the target of the links)

At the beginning, all links are inactive and only those with no
dependencies (those that are not declared as target) can execute.

H. Paik (CSE, UNSW) BPM Week 4 40 / 60

BPEL Example 1

The transition conditions on source (transitionCondition):

Consider this:

<receive name="receive1" partner="customer"
portType="apns:loanApprovalPT"
operation="approve" variable="request" createInstance="yes">

<source linkName="receive-to-assess"
transitionCondition="getVariableData(’request’,’amount’)<10000"/>

<source linkName="receive-to-approval"
transitionCondition="getVariableData(’request’,’amount’)>=10000"/>

</receive>

Once the activity completes (i.e., receive), its outgoing links (ie.,
two sources) get evaluated using the transition condition

the transition condition is an XPath expression

A special XPath function:

getVariableData (’variableName’, ’partName’,’locationPath’?)

The evaluation results in true or false.

H. Paik (CSE, UNSW) BPM Week 4 41 / 60

BPEL Example 1

According to loanapproval.bpel, ’request’ in the function
getVariableData is mapped to the CreditInfomationMessage

messsageType:

<variables>

<variable name="request" messageType="loandef:CreditInformationMessage"/>

...

</variable>

which has:

<message name="creditInformationMessage">

<part name="firstName" type="xsd:string"/>

<part name="name" type="xsd:string"/>

<part name="amount" type="xsd:integer"/>

</message>

Hence, the XPath function will return a number (ie., amount).

Depending on the result of the transition condition, the target activity of
the link may (or may not!) become active.

H. Paik (CSE, UNSW) BPM Week 4 42 / 60

BPEL Example 1

Data assignment: <assisgn> activity.

Consider this:

<invoke name="invokeAssessor" partner="assessor"

portType="asns:riskAssessmentPT"

operation="check" inputVariable="request"

outputVariable="riskAssessment">

...

<source linkName="assess-to-setMessage"

transitionCondition="getVariableData(’riskAssessment’, ’risk’)=’low’"/>

<source linkName="assess-to-approval"

transitionCondition="getVariableData(’riskAssessment’, ’risk’)!=’low’"/>

</invoke>

The result of ’check’ is stored in the ’riskAssessment’ message (’low’
or ’high’).

If the message says ’low’, we would like to set the correct response for
’approvalInfo’ message (ie., yes).

H. Paik (CSE, UNSW) BPM Week 4 43 / 60

BPEL Example 1

Define an <assign> activity as follows:

<assign name="assign">

<target linkName="assess-to-setMessage"/>

<source linkName="setMessage-to-reply"/>

<copy>

<from expression="’yes’"/>

<to variable="approvalInfo" part="accept"/>

</copy>

</assign>

Any general XPath expression is allowed in <from> element, as long as it
returns a valid XPath value type (ie., string, number or boolean).

The result of <copy> is that string ’yes’ is copied to the ’accept’ part of
the ’approvalInfo’ message.

H. Paik (CSE, UNSW) BPM Week 4 44 / 60

BPEL Example 1

<invoke>
assessor

<assign>

<reply>

<invoke>
approval

assess-to-setMessage

setMessage-to-reply

approval-to-reply

assess-to-approval
risk='high'

risk='low'

The assign activity is the target of ’assess-to-setMessage’ link, which
means it is activated after ’assessor’ is done.

After <assign> is completed, the outgoing link (source) is evaluated
(true, in this case.)

H. Paik (CSE, UNSW) BPM Week 4 45 / 60

BPEL Example 1

Consider that there is more than one target (i.e., more than one incoming
links). How do we synchronising activities?

<invoke name="invokeapprover"

partner="approver" portType="apns:loanApprovalPT"

operation="approve"

inputVariable="request"

outputVariable="approvalInfo">

<target linkName="receive-to-approval"/>

<target linkName="assess-to-approval"/>

<source linkName="approval-to-reply" />

</invoke>

<reply name="reply" partner="customer"

portType="apns:loanApprovalPT"

operation="approve" variable="approvalInfo">

<target linkName="setMessage-to-reply"/>

<target linkName="approval-to-reply"/>

</reply>

Each activity that is the target of a link has an implicit/explicit
joinCondition attribute that is used to evaluate the state.

H. Paik (CSE, UNSW) BPM Week 4 46 / 60

BPEL Example 1

The default semantics of the condition (ie., implicit join condition): wait
until the status of all ’incoming’ links has been determined. If at least one
of the ’incoming’ links is true, the activity (ie., invoke and receive)
itself is activated.

<invoke>
assessor

<assign>

<reply>

<invoke>
approval

assess-to-setMessage

setMessage-to-reply

approval-to-reply

assess-to-approval
risk='high'

risk='low'

<receive>
a>=10000a<10000

For explicit join condition, you can use bpws:getLinkStatus.

H. Paik (CSE, UNSW) BPM Week 4 47 / 60

BPEL Example 1: Recap

Green links (or pale coloured in b/w) are evaluated with true and black
lines are false in each run.

<flow>
<receive>

<invoke> <invoke>

<assign>

<reply>

a<10000 a>=10000

risk='high'

risk='low'

amount < 10000
risk='high'

<flow>
<receive>

<invoke> <invoke>

<assign>

<reply>

a<10000 a>=10000

risk='high'

risk='low'

amount < 10000
risk='low'

H. Paik (CSE, UNSW) BPM Week 4 48 / 60

BPEL through Examples

Example 2: (To learn: message correlation) Add an extra business logic
that allows the customers to actually obtain the loan that they have been
approved for. We’ll add a receive activity to accept the request to obtain
the loan, and a reply activity to acknowledge it has been obtained.

Lifecycle of a BPEL process

BPEL specification is a template for creating business process
instances

Every BPEL process must have at least one ’start activity’ that is
marked by ’createInstance=”yes”’

’Message correlation set’ is used to route messages to the correct
instances

A process terminates when all activities are complete, or fault reaches
the process scope, or terminate activity is defined.

H. Paik (CSE, UNSW) BPM Week 4 49 / 60

BPEL Example 2

loan
assessor

loan
approver

<process>

<receive>

<invoke> <invoke>

<assign>
<reply>

a<10000 a>=10000
risk='high'

risk='low'

riskAssessmentPT loanApprovalPT

<receive>

<reply>

accept='yes'

To achieve this, whenever a message arrives, you need to identify
which instance of the business process it belongs to (ie., stateful
conversation)

H. Paik (CSE, UNSW) BPM Week 4 50 / 60

BPEL Example 2

So now added in loanapproval.wsdl:

<portType name="loanApprovalPT">

<operation name="obtain">

<input message="loandef:creditInformationMessage"/>

<output message="apns:approvalMessage"/>

</operation>

</portType>

<plnk:partnerLinkType name="loanApprovalLinkType">

<slnk:role name="approver">

<portType name="apns:loanApprovalPT"/>

<portType name="lns:loanApprovalPT"/>

</plnk:role>

</plnk:partnerLinkType>

<variables>

<variable name="acceptanceRequest" // new variable

messageType="loandef:creditInformationMessage"/>

...

H. Paik (CSE, UNSW) BPM Week 4 51 / 60

BPEL Example 2

What we need here is to make sure that the request to obtain the loan
arrives at the same process instance that provided the initial approval. (ie.,
enabling a ’stateful’ conversation)

In BPEL, this is called – Message Correlation. It refers to routing of a
message from a known customer to the correct instance of a business
process.

A BPEL instance is identified by a unique correlationSet.

one or more sets of key data fields within the exchanged messages

eg., an order number

eg., customer’s lastname and date of birth.

Use XPath expressions to identify the key data fields in the messages

H. Paik (CSE, UNSW) BPM Week 4 52 / 60

BPEL Example 2

Defining a correlation set:

First, define what WSDL ’properties’ we correlated on (ie., what will be
used as a unique identifier?)

In this example, we assume that customer names are unique. In
loanapproval.wsdl, add the following two WSDL ’properties’:

<bpws:property name="applicantFirstName" type="xsd:string"/>

<bpws:property name="applicantLastName" type="xsd:string"/>

Then define how the ’properties’ are extracted:

<bpws:propertyAlias propertyName="lns:applicantFirstName"

messageType="loandef:creditInformationMessage"

part="firstName"

query="/firstName"/>

<bpws:propertyAlias propertyName="lns:applicantLastName"

messageType="loandef:creditInformationMessage"

part="name"

query="/name"/>

H. Paik (CSE, UNSW) BPM Week 4 53 / 60

BPEL Example 2

Now define a correlation set:

<correlationSets>

<correlationSet name="loanIdentifier"

properties="lns:applicantFirstName lns:applicantLastName"/>

</correlationSets>

The set needs to be initialised before the second receive activity (eg., the
first receive activity is an obvious choice).

Initialisation makes the tie between a process instance and the set.

H. Paik (CSE, UNSW) BPM Week 4 54 / 60

BPEL Example 2

<receive name="receive1" partner="customer"

portType="apns:loanApprovalPT"

operation="approve" variable="request"

createInstance="yes">

<source linkName="receive-to-assess"

transitionCondition="bpws:getVariableData(’request’,’amount’)<10000"/>

<source linkName="receive-to-approval"

transitionCondition="bpws:getVariableData(’request’,’amount’)>=10000"/>

<correlations>

<correlation set="loanIdentifier" initiation="yes"/> // initialised

</correlations>

</receive>

When receive needs to run, the incoming message is checked (ie., values
of the fields specified in the correlation set against the initialised values for
the set).

H. Paik (CSE, UNSW) BPM Week 4 55 / 60

BPEL through Examples

Example 3: (To learn error handling in BPEL; scope, faultHandlers, throw
elements:) Add a fault handler which notifies the customers when they try
to obtain a loan that is higher than the one they have been approved for.

<faultHandlers>: When an error occurs, BEPL provides a mechanism
to catch the error and handle it by executing another activity defined
by a fault handler.

An error handling usually affects a set of activities associated with
each other. In BPEL, this is done by enclosing them in a < scope >.

<scope> can be considered as a possibly recoverable, compensatable
unit of work.

H. Paik (CSE, UNSW) BPM Week 4 56 / 60

BPEL Example 3

loan
asses
sor

loan
appr
over

<process>
<flow>

<receive>

<invoke> <invoke>

<assign>

<reply>

a<10000 a>=10000
risk='high'

risk='low'

riskAssessmentPT loanApprovalPT

accept='yes'

<scope>
<flow>

<receive>

<reply><throw>

<empty>

amt>amt amt<=amt

<assign>

<reply>

<seq>x

H. Paik (CSE, UNSW) BPM Week 4 57 / 60

BPEL Example 3

The fault handler definition and error throwing:

<scope name="new-scope"> // scope for error handling
<source linkName="scope-to-empty"/>
<faultHandlers>
<catch faultName="lns:loanProcessFault"

faultVariable="error">
<sequence name="fault-sequence">

<assign>
<copy>

<from expression="’invalid request: amount too high’"/>
<to variable="approvalInfo" part="accept"/>

</copy>
</assign>
<reply partner="customer" portType="lns:loanApprovalPT"

operation="obtain" variable="approvalInfo"
faultName="lns:loanProcessFault"/>

</sequence>
</catch>

</faultHandlers>

H. Paik (CSE, UNSW) BPM Week 4 58 / 60

BPEL Example 3

<flow name="inner-flow">
<receive name="acceptance-receive" partner="customer"

portType="lns:loanApprovalPT"
operation="obtain" variable="acceptanceRequest">

<target linkName="reply-to-receive"/>
<source linkName="receive-to-grant"

transitionCondition=
"bpws:getVariableData(’acceptanceRequest’,’amount’)
<=bpws:getVariableData(’request’, ’amount’)"/>

<source linkName="receive-to-fail"
transitionCondition=
"bpws:getVariableData(’acceptanceRequest’, ’amount’)
>bpws:getVariableData(’request’, ’amount’)"/>

<correlations>
<correlation set="loanIdentifier"/>

</correlations>
</receive>

H. Paik (CSE, UNSW) BPM Week 4 59 / 60

BPEL Example 3

<reply name="grant-reply" partner="customer"
portType="lns:loanApprovalPT" operation="obtain"
variable="approvalInfo">

<target linkName="receive-to-grant"/>
</reply>
<throw name="grant-failure" faultName="lns:loanProcessFault">

<target linkName="receive-to-fail"/>
</throw>

</flow>
</scope>
<empty name="the-last-one">

<target linkName="scope-to-empty"/>
</empty>

</flow>

There are also other activities that are useful: < switch >, < pick >

References:

http://www.oasis-
open.org/committees/download.php/23964/wsbpel-v2.0-primer.htm
Apache ODE project (ode.apache.org/)
Eclipse BPEL Designer Project - www.eclipse.org/bpel/

H. Paik (CSE, UNSW) BPM Week 4 60 / 60

