
Web Services Foundations: SOAP, WSDL and UDDI

Helen Paik

School of Computer Science and Engineering
University of New South Wales

References used for the Lecture:

Alonso Book Chapter 5-6

Webber Book Chapter 3-4

Mike Book Chapter 4-5

Acknowledgement: Some other materials is adapted from COMP9322 lectures in previous sessions, which are prepared by
Dr. Helen H-Y Paik, Prof. Boualem Benatallah and Dr. Sherif Sakr. Some slides are prepared by Prof. Fabio Casati.

Week 2/3

H. Paik (CSE, UNSW) ws-foundation Week 2/3 1 / 125

SOA as a middleware solution

information system architectures (1, 2, 3 and N-tiers)

application integration layer: middleware

H. Paik (CSE, UNSW) ws-foundation Week 2/3 2 / 125

SOA as a middleware solution: Service Bus

... often called Enterprise Service Bus1

1
http://enterprisearchitecture.nih.gov/ArchLib/AT/TA/EnterpriseServiceBusPattern.htm

H. Paik (CSE, UNSW) ws-foundation Week 2/3 3 / 125

http://enterprisearchitecture.nih.gov/ArchLib/AT/TA/EnterpriseServiceBusPattern.htm

Web Services

In the context of middleware/service bus, we can see Web services as
(individual) software component building technology that allows the
underlying applications to communicate with client applications (both
synchronised, or asynchronised).

Outside the middleware context (i.e., more generically speaking), A
Web service is a software component that can be accessed by another
application (such as a client program, a server or another Web service)

H. Paik (CSE, UNSW) ws-foundation Week 2/3 4 / 125

Part I

Web Services - Introduction

H. Paik (CSE, UNSW) ws-foundation Week 2/3 5 / 125

Example - Amazon / Searching for booksSearching for books…

H. Paik (CSE, UNSW) ws-foundation Week 2/3 6 / 125

Amazon Search as an Application on the Web
Amazon search as a Service on the

Web

web

sellercustomer

web
server

internal
database

(multiple interactions)

H. Paik (CSE, UNSW) ws-foundation Week 2/3 7 / 125

Amazon Search as a Web ServiceAmazon search as a Web service

web

sellerCustomer application

client
API web

service

internal
database

(usually one interaction)
client

API

e.g., http://webservices.amazon.com/AWSECommerceService/
AWSECommerceService.wsdl

H. Paik (CSE, UNSW) ws-foundation Week 2/3 8 / 125

http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl
http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

Soft. System to Soft. System Communication - Manual

H. Paik (CSE, UNSW) ws-foundation Week 2/3 9 / 125

Soft. System to Soft. System Comm. - Automated

H. Paik (CSE, UNSW) ws-foundation Week 2/3 10 / 125

Fundamental Differences and Implications

Fundamental differences

No human in the loop. The behaviour of the client is based on its
code (pre-determined), no form-based interface to drive user input or
interactions when things go wrong

Implications (among other things):

Specified and ’self-explanatory’ programming interface

Specified interaction style ... expected consumer-provider behaviour
(e.g., can I search before login?)

→ We need standardised approach to addressing these issues ...

H. Paik (CSE, UNSW) ws-foundation Week 2/3 11 / 125

Web Services

Key concept: a Web service is a software component designed to support
interoperable machine-to-machine interaction over a network.

Allow applications to share data and invoke capabilities from other
applications

Key facts:

No need to consider how the ’other’ applications were built, what
operating system or platform they run on

A standardised way of application-to-application communication
based on XML open standards (ie., SOAP, WSDL and UDDI) over an
Internet protocol backbone.

Unlike traditional client/server models, web services do not require
GUI or browser - not meant for human consumption.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 12 / 125

Web services commercial frameworks

Microsoft
(http://msdn.microsoft.com/en-us/library/ms950421.aspx)

“XML Web services are the fundamental building blocks in the move to
distributed computing on the Internet.”

IBM

(http://www.ibm.com/software/solutions/soa)

“Self-contained, modular applications that can be described, published,
located and invoked over a network (generally the Internet).”

Oracle
(http://www.oracle.com/us/technologies/soa/index.html)

“Service-oriented architecture ... is the cornerstone design principle
upon which organizations are building and integrating modern business
applications.”

and so on ...

H. Paik (CSE, UNSW) ws-foundation Week 2/3 13 / 125

http://msdn.microsoft.com/en-us/library/ms950421.aspx
http://www.ibm.com/software/solutions/soa
http://www.oracle.com/us/technologies/soa/index.html

Web Services Conceptual Architecture (by IBM)

Basic Web Services Architecture

Service
Registry

Service
Requestor

Service
Provider

Service
Description

Service
Description

Service

Find Publish

Bind

H. Paik (CSE, UNSW) ws-foundation Week 2/3 14 / 125

Web Services Conceptual Architecture (by IBM)

Three Roles:

service provider: develops an electronic service and registers its
description at a publicly accessible service registry.

service registry: store/manage web services details

service requestor: query the registry to find an electronic service that
meets his or her requirements. A binding occurs between the service
provider and the service requestor.

Main Web Services Standards:

For service registry: UDDI, Universal Description, Discovery and
Integration (http://uddi.xml.org/)

For service description: WSDL, Web-services Description Language (
www.w3.org/TR/wsdl/)

For messages: SOAP, Simple Object Access Protocol
(www.w3.org/TR/SOAP/)

H. Paik (CSE, UNSW) ws-foundation Week 2/3 15 / 125

http://uddi.xml.org/
www.w3.org/TR/wsdl/
www.w3.org/TR/SOAP/

Web Services Conceptual Architecture (by IBM)

Basic Web Services Architecture - supported by standards

Service

Service
Registry

Service
Requestor

Service
Provider

Service
Description

Service
Description

In UDDI

Using
SOAP

In Your
Own

Language

In WSDL

Find

Bind

Publish

H. Paik (CSE, UNSW) ws-foundation Week 2/3 16 / 125

Interactions between WS and Client

The web service provider declares his services within the UDDI register.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 17 / 125

Interactions between WS and Client

The client looks for a Web service in the UDDI register

Downloads the Web service’s WSDL to build or generate a proxy (stub) for
the web service

H. Paik (CSE, UNSW) ws-foundation Week 2/3 18 / 125

Interactions between WS and Client

The client invokes the Web service through the proxy sending/receiving
SOAP messages

H. Paik (CSE, UNSW) ws-foundation Week 2/3 19 / 125

So ... to summarise ...

What would you say the fundamental differences are between a Web
site/app and Web service?

Many middleware solutions have been proposed in the past ... What’s
different about Web services?

Can you name three roles in the basic Web service architecture?

Can you name the standards supporting the basic Web service
architecture?

Can you describe the basic interactions between WS and its client in
the basic Web service architecture?

H. Paik (CSE, UNSW) ws-foundation Week 2/3 20 / 125

Part II

SOAP

H. Paik (CSE, UNSW) ws-foundation Week 2/3 21 / 125

SOAP and Web Services

SOAP is a protocol for transferring data/message across the Internet.

Web services are the remote objects. They use SOAP to transmit
data to and from client (client can also be a Web service)

So, SOAP is at the heart of Web services architecture in terms of
enabling message exchanges

2

2Webber book, p72
H. Paik (CSE, UNSW) ws-foundation Week 2/3 22 / 125

Simple Object Access Protocol (SOAP)

SOAP defines a standard message format for communication, describing
how information should be packaged into an XML document.

<?xml version="1.0"?>

<soap:Envelope>

<soap:Header>...</soap:Header>

<soap:Body>...</soap:Body>

</soap:Envelope>

Application payload in
the body

Additional protocol (e.g.,
security, transaction)
messages in the header

H. Paik (CSE, UNSW) ws-foundation Week 2/3 23 / 125

SOAP Message Example

Sample SOAP Request and Response Message for Google’s Web Service
Interface (illustration purpose only)

http://www.w3.org/2004/06/03-google-soap-wsdl.html

H. Paik (CSE, UNSW) ws-foundation Week 2/3 24 / 125

http://www.w3.org/2004/06/03-google-soap-wsdl.html

Very Basic SOAP Architecture

SOAP was initially adopted by Microsoft for inter-application
communication within .NET framework

now it is adopted by many other languages ...

J2EE 1.5 (onwards) supports JAX-WS (Java implementation of SOAP)
PHP 4 and over, Perl, Python, etc.

This means ... in SOAP, the following is possible:

H. Paik (CSE, UNSW) ws-foundation Week 2/3 25 / 125

Distributed messaging using SOAP (p.124 Mike Book)

SOAP server: Simply special code that listens for SOAP messages and acts as a

distributor and interpreter of SOAP documents

H. Paik (CSE, UNSW) ws-foundation Week 2/3 26 / 125

Binding SOAP with a Transfer Protocol

HTTP Post Request

param 1

param 2

SOAP Envelope

SOAP Body
Method Request Name

SOAP Header

return order_id

SOAP Envelope

SOAP Body
Method Return

SOAP Header

HTTP Response SOAP Engine
&

HTTP Engine

Service Requestor

SOAP Engine
&

HTTP Engine

Service Provider

H. Paik (CSE, UNSW) ws-foundation Week 2/3 27 / 125

An example of SOAP Binding over HTTP

Here is a request to a web service for the current price of stock DIS:

POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

SOAPAction: "Some-URI"

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DIS</symbol>

</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

H. Paik (CSE, UNSW) ws-foundation Week 2/3 28 / 125

An example of SOAP Binding over HTTP

And here is the response from the service:

HTTP/1.1 200 OK

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Body>

<m:GetLastTradePriceResponse xmlns:m="Some-URI">

<Price>34.5</Price>

</m:GetLastTradePriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

H. Paik (CSE, UNSW) ws-foundation Week 2/3 29 / 125

An example of SOAP Binding over SMTP
e.g., http://www.pocketsoap.com/

To: <soap@example.org>

From: <soap@client.com>

Reply-To: <soap@client.com>

Date: Tue, 15 Nov 2001 23:27:00 -0700

Message-Id: <1F75D4D515C3EC3F34FEAB51237675B5@client.com>

MIME-Version: 1.0

Content-Type: text/xml; charset=utf-8

Content-Transfer-Encoding: QUOTED-PRINTABLE

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>

<m:echoString xmlns:m="http://soapinterop.org/">

<inputString>get your SOAP over SMTP here !</inputString>

</m:echoString>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>
H. Paik (CSE, UNSW) ws-foundation Week 2/3 30 / 125

An example of SOAP Binding over SMTP

To: <soap@client.com>

From: <soap@example.org>

Date: Tue, 13 Nov 2001 23:27:00 -0700

In-Reply-To: <1F75D4D515C3EC3F34FEAB51237675B5@client.com>

Message-Id: <FF75D4D515C3EC3F34FEAB51237675B5@soap.example.org>

MIME-Version: 1.0

Content-Type: TEXT/XML; charset=utf-8

Content-Transfer-Encoding: QUOTED-PRINTABLE

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>

<m:echoStringResponse xmlns:m="http://soapinterop.org/">

<return>get your SOAP over SMTP here !</return>

</m:echoStringResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

H. Paik (CSE, UNSW) ws-foundation Week 2/3 31 / 125

SOAP communication model: RPC-style

An RPC-style WS appears as a remote object to a client

Client express their request as a method call with a set of parameters

Service returns a response containing a return value

Request-response (tightly coupled and synchronous communication model)

H. Paik (CSE, UNSW) ws-foundation Week 2/3 32 / 125

SOAP communication model: RPC-style

Example of an RPC-style SOAP communication (p.135-138 Mike Book)

<env:Envelope ...>

<env:Header> some header </env:Header>

<env:Body>

<m:GetProductPrice>

<product-id> 450R60P </product-id>

</m:GetProductPrice>

</env:Body>

</env:Envelope>

<env:Envelope ...>

<env:Header> some header </env:Header>

<env:Body>

<m:GetProductPriceResponse>

<product-price> 134.32 </product-price>

</m:GetProductPriceResponse>

</env:Body>

</env:Envelope>

Key point: SOAP Body must conform to a structure that indicates the method name and

contains a set of parameters

H. Paik (CSE, UNSW) ws-foundation Week 2/3 33 / 125

SOAP communication model: Document-style

SOAP actually contains ’XML data’ (not a method call)

Client sends an entire document (e.g., purchase order) rather than a discrete
set of parameters

Message driven, asynchronous communication model

H. Paik (CSE, UNSW) ws-foundation Week 2/3 34 / 125

SOAP communication model: Document-style

Example of an Document-style SOAP (p.135-138 Mike Book)

<env:Envelope ...>

<env:Header> some header </env:Header>

<env:Body>

<po:PurchaseOrder orderDate="2004-12-02">

<po:from>

<po:accountName> RightPlastics </po:accountName>

<po:accountNumber> PSC-0343-02 </po:accountNumber>

</po:from>

<po:to>

<po:supplierName> Plastic Supplies Inc.</po:supplierName>

<po:supplierAddress> Yarra Valley Melbourne</po:supplierAddress>

</po:to>

<po:product>

<po:product-name> injection molder </po:product-name>

<po:product-model> G-100T </po:product-model>

<po:quantity> 2 </po:quantity>

<po:product>

</po:PurchaseOrder>

</env:Body>

</env:Envelope>

Key point: SOAP Body contains well-formed XML documents
H. Paik (CSE, UNSW) ws-foundation Week 2/3 35 / 125

Summary

The communication protocol used by all participants in WS
architecture is: (...)

Among other things, SOAP defines the message format - can you
describe the main skeleton/structure of a SOAP message?

How would you describe what SOAP engine/server is?

SOAP can be transmitted over Internet based protocols like (...) and
(...)

Can you name the two SOAP communication styles?

Which one of the two is suitable for asynchronous communication?

H. Paik (CSE, UNSW) ws-foundation Week 2/3 36 / 125

Part III

WSDL

H. Paik (CSE, UNSW) ws-foundation Week 2/3 37 / 125

Web Services Description Language

A WS interaction typically involves two roles3

requester: the initiator, who requests the service sending the first
message,

provider: the follower, who provides the service replying to the
request.

3
Dr Marcello La Rosa, QUT, INB/N374 Intro to Web Services

H. Paik (CSE, UNSW) ws-foundation Week 2/3 38 / 125

Web Services Description Language

WSDL – pronounced “Whiz Dull”

It is a machine-processable specification of the Web service’s
interface, written in Web Service Description Language (WSDL).

Specification: http://www.w3.org/TR/wsdl

It uses XML syntax. It describes a service in terms of the operations
that make up the service, the messages that each operation requires,
and the parts from which each message is composed.

It is used by the client to generate a proxy (client stub) to the Web
service. The proxy is then acts as a go-between between the WS and
the client. This is usually done by a tool.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 39 / 125

http://www.w3.org/TR/wsdl

Web Services Description Language: Two parts

The split between abstract and concrete parts → useful for separating
Web service design and Web service deployment environment details

H. Paik (CSE, UNSW) ws-foundation Week 2/3 40 / 125

WSDL Structure: Webber book (p.101)

H. Paik (CSE, UNSW) ws-foundation Week 2/3 41 / 125

WSDL Main Elements: definitions

Say ... we want to desribe a Web service that offers one operation:

double GetStockQuote(string symbol);

We start writing WSDL with ..

<wsdl:definitions targetNamespace="http://stock.example.org/wsdl"

xmlns:tns="http://stock.example.org/wsdl"

xmlns:stockQ="http://stock.example.org/schema"

xmlns:wsdl="http://www.w3.org/2003/02/wsdl">

<!-- child elements -->

</wsdl:definitions>

the parent for all other WSDL elements

declare global namespaces in use

H. Paik (CSE, UNSW) ws-foundation Week 2/3 42 / 125

WSDL Main Elements: types

The types element encloses a number types/XML elements used in the
interface description (XML Schema types).

<wsdl:definitions ...>

<wsdl:import namespace="http://stock.example.org/schema"

location="http://stock.example/org/schema"/>

<wsdl:types xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="stock_quote">

<xs:complexType>

<xs:sequence>

<xs:element name="symbol" ref="stockQ:symbol"/>

<xs:element name="lastPrice" ref="stockQ:price"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<!-- other type/XML elements definitions -->

</wsdl:types>

</wsdl:definitions>

In another document, you can find definitions for symbol and price, for example:

<xsd:schema targetNamespace="http://stock.example.org/schema" ...>

<xsd:element name="symbol" type="xsd:string"/>

<xsd:element name="price" type="xsd:string"/>

</xsd:schema>

H. Paik (CSE, UNSW) ws-foundation Week 2/3 43 / 125

WSDL Main Elements: message

The message element declares the form of a message that the Web service
sends/receives.

<wsdl:message name="StockPriceRequestMessage">

<wsdl:part name="symbol" element="stockQ:symbol" />

</wsdl:message>

<wsdl:message name="StockPriceResponseMessage">

<wsdl:part name="price" element="stockQ:stock_quote" />

</wsdl:message>

<wsdl:message name="StockSymbolNotFoundMessage">

<wsdl:part name="symbol" element="stockQ:symbol" />

</wsdl:message>

It defines what kind of messages is expected as input, output and fault by
this Web service

each message is constructed from a number of XML Schema-typed part

element.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 44 / 125

WSDL Main Elements: portType

The portType element contains a named set of operations. It defines the
functionality of the Web service (ie., what the service does).

<wsdl:portType name="StockBrokerQueryPortType">

<wsdl:operation name="GetStockPrice">

<wsdl:input message="tns:StockPriceRequestMessage"/>

<wsdl:output message="tns:StockPriceResponseMessage"/>

<wsdl:fault name="UnknownSymbolFault"

message="tns:StockSymbolNotFoundMessage"/>

</wsdl:operation>

<!-- other operations -->

</wsdl:portType>

Each operation combines input, output and fault messages from a set of
messages defined previously

Note: WSDL 1.2 changes portType to interface

H. Paik (CSE, UNSW) ws-foundation Week 2/3 45 / 125

WSDL Main Elements: operation

Not all operations will have a single input, output and fault.

operation indicate a message exchange pattern (transmission primitives):

Request-response (i.e., Input-Output): The Web service receives a
message, and sends a correlated message (or fault).

One-way (i.e., Input only): The service receives a message. The
service consumes the message and does not produce any output or
fault message.

Solicit-response (i.e., Output-Input): The service generates a
message, and receives a correlated message (or fault) in return.

Notification (i.e., Output only): The service sends a message. It
does not expect anything in return.

Synchronous interactions are defined using request-response, and
solicit-response, while asynchronous interactions are defined using one-way
and notifications operations.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 46 / 125

Transmission primitives (general syntax)

One-way Operation:

<wsdl:definitions >

<wsdl:portType > *

<wsdl:operation name="nmtoken">

<wsdl:input name="nmtoken"? message="qname"/>

</wsdl:operation>

</wsdl:portType >

</wsdl:definitions>

Notification Operation:

<wsdl:definitions >

<wsdl:portType > *

<wsdl:operation name="nmtoken">

<wsdl:output name="nmtoken"? message="qname"/>

</wsdl:operation>

</wsdl:portType >

</wsdl:definitions>

example scenarios?

H. Paik (CSE, UNSW) ws-foundation Week 2/3 47 / 125

Transmission primitives (general syntax)

Request-response Operation:

<wsdl:portType >

<wsdl:operation name="nmtoken" parameterOrder="nmtokens">

<wsdl:input name="nmtoken"? message="qname"/>

<wsdl:output name="nmtoken"? message="qname"/>

<wsdl:fault name="nmtoken" message="qname"/>

</wsdl:operation>

</wsdl:portType >

Solicit-response Operation:

<wsdl:portType >

<wsdl:operation name="nmtoken" parameterOrder="nmtokens">

<wsdl:output name="nmtoken"? message="qname"/>

<wsdl:input name="nmtoken"? message="qname"/>

<wsdl:fault name="nmtoken" message="qname"/>

</wsdl:operation>

</wsdl:portType >

example scenarios?

H. Paik (CSE, UNSW) ws-foundation Week 2/3 48 / 125

WSDL Main Elements: binding

The second portion of a service description involves specific (concrete)
statements about how to use the service:

A binding defines message encoding format and protocol details for
operations and messages defined by a particular portType.

<wsdl:binding name="StockBrokerServiceSOAPBinding"
type="tns:StockBrokerQueryPortType">

<soap:binding style="document"
transport="http://www.w3.org/2002/12/soap/bindings/HTTP/" />

<wsdl:operation name="GetStockPrice">
<soap:operation soapAction="http://stock.example.org/getStockPrice" />
<wsdl:input>

<soap:body use="literal" encodingStyle="http://stock.example.org/schema"/>
</wsdl:input>
<wsdl:output>

<soap:body use="literal" encodingStyle="http://stock.example.org/schema"/>
</wsdl:output>
<wsdl:fault>

<soap:fault name="StockSymbolNotFoundMessage"/>
</wsdl:fault>

</wsdl:operation>
</wsdl:binding>

H. Paik (CSE, UNSW) ws-foundation Week 2/3 49 / 125

WSDL Main Elements: binding

wsdl:binding –

name attribute: name of the binding (use any name you want),

type attribute: points to the portType for the binding

soap:binding –

the purpose of the SOAP binding element is to signify that the
binding is bound to the SOAP protocol format: Envelope, Header and
Body. This element makes no claims as to the encoding or format of
the message.

style attribute: this can be ’rpc’ or ’document’. It determines the how
the SOAP body is constructed (rpc-style or document-style).

transport attribute: transport protocol to use (eg. HTTP, SMTP).

H. Paik (CSE, UNSW) ws-foundation Week 2/3 50 / 125

WSDL Main Elements: binding

wsdl:operation –

It maps each operation in the portType to a binding

For each operation in the portType, specify how the input and output
messages/data are encoded

soap:operation –

soapAction attribute specifies the value of the SOAPAction header for
this operation. For the HTTP protocol binding of SOAP, this is value
required (it has no default value).

soap:body –

The soap:body element specifies how the message parts appear inside the
SOAP Body element.

http://www.w3.org/TR/wsdl#_soap:body

use attribute: literal (literally follow an XML Schema definition) or encoded
(follow SOAP encoding specification)

H. Paik (CSE, UNSW) ws-foundation Week 2/3 51 / 125

http://www.w3.org/TR/wsdl#_soap:body

WSDL Main Elements: service

The service element:

A port element defines an specific network endpoint (address) for a
binding.

<wsdl:service name="StockBrokerService">

<wsdl:port name="StockBrokerServiceSOAPPort"

binding="tns:StockBrokerServiceSOAPBinding>

<soap:address location="http://stock.example.org/" />

</wsdl:port>

</wsdl:service>

A service is a generic wrapper that groups various methods together.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 52 / 125

Im
port

XML Data

Types

Message Part Message Part Message Part

Input

Message

Output

Message
Fault

Message

XML Data

Types

XML Data

Types

MIME Endpoint

Binding

Port

Service

Im
p
o
rt

HTTP Endpoint

Binding

Port

Service

Im
p
o
rt

SOAP Endpoint

Binding

Port

Service

1..N

0..N0..1

0..1

0..N0..N0..N

1..N 1..N
1..N

1..N 1..N 1..N

1 1 1

A single abstract
definition is possible to be
exposed to the network
via a number of protocols
(having different bindings,
offered on different ports,
etc)

H. Paik (CSE, UNSW) ws-foundation Week 2/3 53 / 125

H. Paik (CSE, UNSW) ws-foundation Week 2/3 54 / 125

Part IV

Service Implementation and Deployment

H. Paik (CSE, UNSW) ws-foundation Week 2/3 55 / 125

Web Service Development

Web service development activities:

design/obtain a service interface (WSDL document and related
skeletons)

implement service business logic / wrap an existing implementation

deploy service to a runtime engine

then ... clients write applications

Web Service Development Patterns

Bottom-up Service Development
Start with (Java) implementation to produce WSDL
Targeted at exposing existing code as Web services

Top-down Service Development
Start with WSDL to produce (Java) service implementation
Best option for developing new Web services

H. Paik (CSE, UNSW) ws-foundation Week 2/3 56 / 125

Implementing Web services with Java

In Java, Web services are supported by two standard specifications:
JAX-WS and JAX-RS

Popular options: Apache Axis2 (ws.apache.org/axis) or Apache CXF. But
Both provide:

a “SOAP engine” – a framework for clients and services to
construct/process SOAP messages

run/operated through Tomcat (as a Web application)

provides various tools for dealing with WSDL

generating client (or server) code templates to access (or create)
remote services from WSDL
data binding (XML to Java object and vice versa)
etc.

* note: We will use Apache CXF for the labs and assignments.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 57 / 125

Bottom-up Development Pattern (Summary)

JavaBean
JavaBean

JavaBean
JavaBean

Java Class
POJO/EJB

WSDL
(embedded
schemas)

Java2WSDL

Skeleton

Stub

JavaBean
JavaBean

JavaBean
JavaBean

WSDL2Java

WSDL2Java

Client-side

Service-side

Deployment
descriptions

it is a quick way to expose legacy implementations as Web services

it requires little or no knowledge of WSDL or XML

Changes to the Java interface and package names are difficult to
manage

H. Paik (CSE, UNSW) ws-foundation Week 2/3 58 / 125

Bottom-up Development Pattern (Summary)

Programming Language First Approach ...4

4
Dr Marcello La Rosa, QUT, INB/N374 Intro to Web Services

H. Paik (CSE, UNSW) ws-foundation Week 2/3 59 / 125

Top-down Development Pattern (Summary)

It supports the use of existing standards-based XSD types, allows for
reuse and greater interoperability

It requires knowledge of WSDL and XSD because both must be
manually generated or manipulated

H. Paik (CSE, UNSW) ws-foundation Week 2/3 60 / 125

Top-down Development Pattern (Summary)

WSDL (contract) First Approach ...5

5
Dr Marcello La Rosa, QUT, INB/N374 Intro to Web Services

H. Paik (CSE, UNSW) ws-foundation Week 2/3 61 / 125

SOAP/WSDL in action6

6
Dr Marcello La Rosa, QUT, INB/N374 Intro to Web Services

H. Paik (CSE, UNSW) ws-foundation Week 2/3 62 / 125

Code-first vs. Contract-first

code-first approach sometimes can run into issues with type
conversion. E.g., the use of Java Collections (such as Maps) -
sometime the same semantics are not available in other languages

benefit of logic-to-contract binding lengthens the lifespan of the
service by blackboxing the implementation from the contract

after all, JAX-WS is referred to as ’FRONT-END’ technology (i.e.,
application logic + Web service interface)

re-use of ’business objects’

H. Paik (CSE, UNSW) ws-foundation Week 2/3 63 / 125

On JAX-WS (Java API for XML Web Services)

JAX-WS

Specification/
Implementation

Guideline
API

Apache CXF

Apache Axis2

Metro

Implements

Java Annotations

Developers

Provided As …

Used In WS Development By

As a developer, you need to learn the JAX-WS API Annotations and mark
your classes and methods with them

At run time, Apache CXF will recognise/interpret the annotations and take
proper actions

H. Paik (CSE, UNSW) ws-foundation Week 2/3 64 / 125

Core JAX-WS Annotations: on the interface (match WSDL)

H. Paik (CSE, UNSW) ws-foundation Week 2/3 65 / 125

Core JAX-WS Annotations: on the implementation class

H. Paik (CSE, UNSW) ws-foundation Week 2/3 66 / 125

On JAXB (Java Architecture for XML Binding)

JAXB

Specification/
Implementation

Guideline
API

Java Standard Since JDK 1.6:

Under JDK Bin/ find:
* xjc
* schemagen

Implements

Java Annotations +
Runtime API

Developers

Provided As …

Used In XML Development By

Three tools in JAXB:

XML Schema → Java Classes (XJC)
Java Classes → XML Schema (SCHEMAGEN)
Runtime API (marshalling/unmarshaling + Annotations)

H. Paik (CSE, UNSW) ws-foundation Week 2/3 67 / 125

On JAXB (Java Architecture for XML Binding)

Borrowed example from Vogella.
http://www.vogella.com/tutorials/JAXB/article.html

H. Paik (CSE, UNSW) ws-foundation Week 2/3 68 / 125

http://www.vogella.com/tutorials/JAXB/article.html

On JAXB (Java Architecture for XML Binding)

JAXB and Apache CXF: wsdl2java, java2wsdl

Refer to Apache CXF documentation -
http://cxf.apache.org/docs/wsdl-to-java.html

Relevant Maven Plug-ins

H. Paik (CSE, UNSW) ws-foundation Week 2/3 69 / 125

JAX-WS Service Client Development

Retrieve the target WSDL, run WSDL2Java → generated Java classes, obtain
Service then obtain Port ... construct a request message and send.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 70 / 125

Part V

More on SOAP/WSDL

H. Paik (CSE, UNSW) ws-foundation Week 2/3 71 / 125

Designing WS Interface with SOAP/WSDL
Given an operation:

Operation name: concat

Parameters: (st1: string, st2: string)

Return: string

More precisely as WS operation ...

Local name: concat

Namespace: http://sltf.unsw.edu.au/eg

Input message:

Part 1:

Name: st1

Type: string in http://www.w3.org/2001/XMLSchema

Part 2:

Name: st2

Type: string in http://www.w3.org/2001/XMLSchema

Output message:

Part 1:

Name: return

Type: string in http://www.w3.org/2001/XMLSchema

H. Paik (CSE, UNSW) ws-foundation Week 2/3 72 / 125

Designing WS Interface with SOAP/WSDL - RPC style

Local name: concat
Namespace: http://sltf.unsw.edu.au/eg
Input message:
Part 1:
 Name: st1
 Type: string in http://www.w3.org/2001/XMLSchema
Part 2:
 Name: st2
 Type: string in http://www.w3.org/2001/XMLSchema
Output message:
Part 1:
 Name: return
 Type: string in http://www.w3.org/2001/XMLSchema

<ese:concat xmlns:ese="http://sltf.unsw.edu.au/eg"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance">
 <st1 xsi:type="xsd:string">service</st1>
 <st2 xsi:type="xsd:string">foundry</st2>
</ese:concat>

<ese:concatResponse xmlns:ese ="http://sltf.unsw.edu.au/eg"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance">
 <return xsi:type="xsd:string">service foundry</return>
</ese:concatResponse>

H. Paik (CSE, UNSW) ws-foundation Week 2/3 73 / 125

Designing WS Interface w/ SOAP/WSDL: Document-style

(note - We first should define the message types)

Local name: concat
Namespace: http://sltf.unsw.edu.au/eg
Input message:
Part 1:
 Name: concatRequest
 Element: concatRequest in http://sltf.unsw.edu.au/eg
Output message:
...

<xsd:schema targetNamespace="http://sltf.unsw.edu.au/eg"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="concatRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="st1" type="xsd:string"/>
 <xsd:element name="st2" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Type of concatRequest defined as a schema

H. Paik (CSE, UNSW) ws-foundation Week 2/3 74 / 125

Designing WS Interface w/ SOAP/WSDL: Document-style

Local name: concat
Namespace: http://sltf.unsw.edu.au/eg
Input message:
Part 1:
 Name: concatRequest
 Element: concatRequest in http://sltf.unsw.edu.au/eg
Output message:
Part 1:
 Name: concatResponse
 Element: concatResponse in http://sltf.unsw.edu.au/eg

<xsd:schema targetNamespace="http://sltf.unsw.edu.au/eg"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="concatRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="st1" type="xsd:string"/>
 <xsd:element name="st2" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="concatResponse" type="xsd:string"/>
</xsd:schema>

Type of concatResponse also defined as a schema

H. Paik (CSE, UNSW) ws-foundation Week 2/3 75 / 125

Designing WS Interface w/ SOAP/WSDL: Document-style

<xsd:schema targetNamespace="http://sltf.unsw.edu.au/eg"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="concatRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="st1" type="xsd:string"/>
 <xsd:element name="st2" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="concatResponse" type="xsd:string"/>
</xsd:schema>

<ese:concatRequest xmlns:ese="http://sltf.unsw.edu.au/eg">
 <st1>service</st1>
 <st2>foundry</st2>
</ese:concatRequest>

<ese:concatResponse xmlns:ese ="http://sltf.unsw.edu.au/eg">
 service foundry
</ese:concatResponse>

These SOAP messages can be validated against the schema

H. Paik (CSE, UNSW) ws-foundation Week 2/3 76 / 125

RPC and Document Binding Options in WSDL

Option 1: (see SimpleConcatRPC as example)

soap:binding, style=rpc, transport=http
soap:body, use=literal (’encoded’ option not supported)

Option 2: (see SimpleConcatDOC as example)

soap:binding, style=document, transport=http
soap:body, use=literal

Note: communication pattern – both could be done in RPC/synchronous
style

H. Paik (CSE, UNSW) ws-foundation Week 2/3 77 / 125

Fault Handling in SOAP

A SOAP Fault message is reserved for providing an extensible mechanism
for transporting structured and unstructured information about problems
that have arisen during the processing of SOAP messages.

Because clients can be written on a variety of platforms using different
languages, there must exist a standard, platform-independent mechanism
for communicating the error. SOAP provides a platform-independent way
of describing the error within the SOAP message using a SOAP fault.

Fault element is located inside body of the message

Two mandatory elements: Code and Reason

Code - e.g., VersionMismatch, MustUnderStand,

DataEncodingUnknown, Sender

Reason - Human readable description of the fault

and other elements (see documents: JAX-WS SOAP Faults)

H. Paik (CSE, UNSW) ws-foundation Week 2/3 78 / 125

SOAP faults appear in the SOAP body section
e.g., SOAP v1.2

<?xml version=’1.0’ ?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" ...

<env:Body>

<env:Fault>

<env:Code>

<env:Value>env:Sender</env:Value>

<env:Subcode>

<env:Value>rpc:BadArguments</env:Value>

</env:Subcode>

</env:Code>

<env:Reason>

<env:Text xml:lang="en-US">Processing error</env:Text>

</env:Reason>

<env:Detail>

<e:myFaultDetails xmlns:e="http://travelcompany.example.org/faults">

<e:message>Name does not match card number</e:message>

<e:errorcode>098</e:errorcode>

</e:myFaultDetails>

</env:Detail>

</env:Fault>

</env:Body>

</env:Envelope>
H. Paik (CSE, UNSW) ws-foundation Week 2/3 79 / 125

SOAP faults appear in the SOAP body section

e.g., SOAP v1.1 (simpler structure)

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap=’http://schemas.xmlsoap.org/soap/envelope’>

<soap:Body>

<soap:Fault>

<faultcode>soap:VersionMismatch</faultcode>

<faultstring, xml:lang=’en">

Message was not SOAP 1.1 compliant

</faultstring>

<faultactor>

http://sample.org.ocm/jws/authnticator

</faultactor>

</soap:Fault>

</soap:Body>

</soap:Envelope>

H. Paik (CSE, UNSW) ws-foundation Week 2/3 80 / 125

<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://examples/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://schemas.xmlsoap…
 targetNamespace="http://examples/" name="HelloWorldService">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://examples/" schemaLocation="http://localhost:…/>
 </xsd:schema>
 </types>
 <message name="sayHelloWorld">
 <part name="parameters" element="tns:sayHelloWorld" />
 </message>
 <message name="sayHelloWorldResponse">
 <part name="parameters" element="tns:sayHelloWorldResponse" />
 </message>
 <message name="MissingName">
 <part name="fault" element="tns:MissingName" />
 </message>
 <portType name="HelloWorld">
 <operation name="sayHelloWorld">
 <input message="tns:sayHelloWorld" />
 <output message="tns:sayHelloWorldResponse" />
 <fault message="tns:MissingName" name="MissingName" />
 </operation>
 </portType>
 <binding name="HelloWorldPortBinding" type="tns:HelloWorld">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document" />
 <operation name="sayHelloWorld">
 <soap:operation soapAction="" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 <fault name="MissingName">
 <soap:fault name="MissingName" use="literal" />
 </fault>
 </operation>
 </binding>
 <service name="HelloWorldService">
 <port name="HelloWorldPort" binding="tns:HelloWorldPortBinding">
 <soap:address
 location="http://localhost:7001/HelloWorld/HelloWorldService" />
 </port>
 </service>

Modelled SOAP faults - in WSDL definition (example from Oracle Docs)

H. Paik (CSE, UNSW) ws-foundation Week 2/3 81 / 125

Modelled SOAP faults - in service-side code

Web services throws the custom Exception- MissingName

package examples;
import javax.jws.WebService;

@WebService(name="HelloWorld", serviceName="HelloWorldService")
public class HelloWorld {
 public String sayHelloWorld(String message) throws MissingName {
 System.out.println("Say Hello World: " + message);
 if (message == null || message.isEmpty()) {
 throw new MissingName();
 }
 return "Here is the message: '" + message + "'";
 }
}

Custom Exception (MissingName.java)

package examples;
import java.lang.Exception;

public class MissingName extends Exception {
 public MissingName() {
 super("Your name is required.");
 }
}

H. Paik (CSE, UNSW) ws-foundation Week 2/3 82 / 125

Modelled SOAP faults - in SOAP

The following shows how the SOAP fault is communicated in the resulting
SOAP message when the MissingName Java exception is thrown.

<?xml version = '1.0' encoding = 'UTF-8'?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <S:Fault xmlns:ns4="http://www.w3.org/2003/05/soap-envelope">
 <faultcode>S:Server</faultcode>
 <faultstring>Your name is required.</faultstring>
 <detail>
 <ns2:MissingName xmlns:ns2="http://examples/">
 <message>Your name is required.</message>
 </ns2:MissingName>
 </detail>
 </S:Fault>
 </S:Body>
</S:Envelope>

H. Paik (CSE, UNSW) ws-foundation Week 2/3 83 / 125

SOAP Message Processing Model

SOAP engines provide a message processing model that assumes that
a SOAP message originates at an initial SOAP sender and is sent to
an ultimate SOAP receiver via zero or more SOAP intermediaries.

The messages pass through a number of intermediate nodes between
the sender and the receiver.

Initial Sender: The message originator
Ultimate Receiver: The intended recipient
Intermediaries: Processing blocks that operate on the soap message
before it reaches the ultimate receiver

Sender Intermediate
next

Intermediate
next

UltimateReceiver...

Message Flow

H. Paik (CSE, UNSW) ws-foundation Week 2/3 84 / 125

SOAP processing model

In a SOAP server (handlers == nodes):

SOAP Server

Web Service Application Logic

Dispatch

body body

header

header

header

header

Handler

Handler

Handler

Handler

header(s)
body

header(s)
body

SO
AP

 R
eq

ue
st

SO
AP R

esponse
Consumes ... Produces ...

Network

Request: process the header blocks, Response: generates the header blocks
H. Paik (CSE, UNSW) ws-foundation Week 2/3 85 / 125

e.g., Apache CXF - Interceptor model

A SOAP engine “implements” a model of their own based on these basics.
Apache CXF uses Inbound, Outbound chains, Phases and Interceptors

Client

Outbound

Inbound

Server

Outbound

Inbound

H. Paik (CSE, UNSW) ws-foundation Week 2/3 86 / 125

e.g., Apache CXF - Interceptor model

Developing an interceptor, regardless of its functionality, always follows the
same basic procedure:

Determine which abstract interceptor class to extend.

Determine the phase in which the interceptor will run.

public class HelloWorldInterceptor extends AbstractPhaseInterceptor

public HelloWorldInterceptor()

super(Phase.INVOKE); // Put this interceptor in this phase

public void handleMessage(Message message) throws Fault

// do the intercepting here ...

Implement the interceptor’s message processing logic.

Attach the interceptor to one of the endpoint’s interceptor chains
(configuration).

H. Paik (CSE, UNSW) ws-foundation Week 2/3 87 / 125

SOAP Processing Model

The intermediaries work by intercepting messages, performing their
function, and forwarding the (altered) message to the ultimate receiver.
Common examples of intermediaries would be:

logging

encryption/decryption intermediary

auditing purpose (e.g., persisting messages for billing or compliance)

Above all, using this model, it is possible to build ‘extensions’ to basic
SOAP (e.g., supporting transaction, different security standards) ...

These extensions are called WS-* Standards.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 88 / 125

SOAP Processing Model and WS-* Standards

Why WS-* Standards? Take a security (e.g., user authentication) scenario.

Credit Card
Payment

Web Service A
Online Shopping

Application

SOAP Request

(needs authentication)

PayPal
Payment

Web Service B

(needs authentication)

SOAP Request

Where should the authentication information be placed? SOAP Body?
SOAP Header? What should be the names of the XML elements?
Could/should Web Service A and Web Service B require their own XML
elements?

H. Paik (CSE, UNSW) ws-foundation Week 2/3 89 / 125

Web Service Standards: WS-* extensions

The term “WS-*” refers to the second generation of Web services
standards/specifications.
On top of the basic standards (WSDL, SOAP and UDDI), these
extensions focus on providing supports for various issues in enterprise
computing environment

Transports

Messaging

Description and Discovery

Transactions Reliability Security

Business Processes Management

First Generation WS

Second Generation WS

http://www.ibm.com/developerworks/webservices/standards/

H. Paik (CSE, UNSW) ws-foundation Week 2/3 90 / 125

Web Service Standards: WS-* extensions

e.g., http://www.ibm.com/developerworks/webservices/standards/
Standards Maze

WS-Addressing

WS-Attachments

WS-Transfer

WS-ReliableMessaging

WS-Reliability

WS-Acknowledegment

ebXMLBPML
SPML

WS-Provisioning

WSDL

Cool! But,
What

Standards I
use?

We should integrate our systems
using Web Service Technologies …

Manager

UDDI

WSRP

WS-InspectionWS-Discovery
ASAP

SOAP

SOAP MTOM

WS-Routing

WS-Referral

XrML

WSXL

WS-Coordination

WS-Enumeration

WS-NotificationWS-Eventing

WS-Topics

WSCI

WSCDLBPEL4WS

WS-MetadataExchange

WS-PolicyFramework

WS-PolicyAssertions
WS-PolicyAttachment

XACMLWS-SecurityPolicy

WSCL

WS-Manageability

WS-ResourceWSDM

WS-BusinessActivity
WS-Transaction

WS-AtomicTransactions

BTP

use?

WS-Federation

WS-Security

WS-Trust

WS-SecureConversation

SAML

XKMS
WS-NonRepudiation

WS-MessageDataWS-CallBack

Too many, Overlap, Conflicts, Convergence (WSDL, SOAP)
(See ``Interoperability Specifications’’, May 06, IEEE Computer, by. Motahari,

Benatallah, Casati and Toumani)

OWL Fat OWL Light

H. Paik (CSE, UNSW) ws-foundation Week 2/3 91 / 125

WS-* extensions and their relationships

WSDL

WS-
Reliable

Messaging

WS-
Coordination

BPEL4WS

UDDI

WS-
Transaction

WS-
Security

WS-Policy

SOAP

Web
Services

enables
discovery of

describes
the service for

describes

uses

governs

manages
context for

provides
protocol for

provides
end-to-end
security for

provides
guaranteed
delivery for

uses

uses

binds to

enables
communication

between

uses

orchestrates
describes

the services for

improves
reliability ofenables

distributed
transactions for

provides
protocol for

manages
context across

uses

uses

is accessed using

http://www.soaspecs.com/ws.php

H. Paik (CSE, UNSW) ws-foundation Week 2/3 92 / 125

WS-* extensions

Just a few “quick” examples:

WS-Security
http://www.ibm.com/developerworks/webservices/library/ws-
security.html
e.g., Apache Rampart

WS-ReliableMessaging
http://www.ibm.com/developerworks/library/specification/ws-rm
e.g., Apache Sandesha2

WS-Policy
http://www.ibm.com/developerworks/webservices/library/ws-
policy.html

H. Paik (CSE, UNSW) ws-foundation Week 2/3 93 / 125

http://www.ibm.com/developerworks/webservices/library/ws-security.html
http://www.ibm.com/developerworks/webservices/library/ws-security.html
http://www.ibm.com/developerworks/library/specification/ws-rm/
http://www.ibm.com/developerworks/webservices/library/ws-policy.html
http://www.ibm.com/developerworks/webservices/library/ws-policy.html

WS-* Standards

Header blocks could contain information that influences payload processing (e.g.,
WS-security standard: credentials info that helps control access to an operation)

H. Paik (CSE, UNSW) ws-foundation Week 2/3 94 / 125

WS-* extensions: Reliable Messaging (Blue Book Chap. 7)

After a Web service transmit a message, it has no immediate way of
knowing whether:

the message successfully arrived at its destination

the message failed to arrive and therefore requires a retransmission

a series of messages arrived in the sequence they were intended to

Web service reliable messaging is a framework that enables an application
running on one application server to reliably invoke a Web service running
on another application server, assuming that both servers implement the
WS-ReliableMessaging specification.

Reliable is defined as the ability to guarantee message delivery between the
two endpoints (Web service and client) in the presence of software
component, system, or network failures.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 95 / 125

Reliable Messaging (Blue Book Chap. 7)

Application
Source

Application
Destination

RM
Source

RM
Destination

SEND RECEIVE

TRANSMIT

WS-RM separates/abstracts ‘initiating messaging’ from ‘performing
actual transmission’
e.g., application source is the service that sends the message to the
RM source (the physical processor/node that performs the actual wire
transmission.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 96 / 125

Reliable Messaging (Blue Book Chap. 7)

Sequences:

A sequence establishes the order in which messages should be
delivered

Each message is labeled with a message number, the last one being a
last message identifier.

Acknowledgements:

A core part of reliable messaging is a notification system used to
communicate conditions from the RM dest. to the RM source.

The acknowledgement message indicates to the RM source which
messages were received.

All this information is “injected” into SOAP headers within the messages
themselves.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 97 / 125

Reliable Messaging (Blue Book Chap. 7)

SEQUENCE

Application
Source

Application
Destination

RM
Source

RM
Destination

SEQUENCE
ACK.

A sequence acknowledgement sent by the RM dest. after the successful
delivery of a sequence of messages.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 98 / 125

Reliable Messaging (Blue Book Chap. 7)

Incomplete Sequence

Application
Source

Application
Destination

RM
Source

RM
Destination

failed delivery

Successful delivery

negative acknowledgement delivery

A negative ack. sent by the RM dest. to the RM source, indicating failed
delivery prior to the completion of the sequence.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 99 / 125

Reliable Messaging (Blue Book Chap. 7)

Delivery assurances:

the nature of a sequence is determined by a set of reliability rules
known as Delivery Assurances.

They are predefined message delivery patterns that establish a set of
reliability policies

H. Paik (CSE, UNSW) ws-foundation Week 2/3 100 / 125

Reliable Messaging (Blue Book Chap. 17)
An example:
<Envelope

xmlns="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2004/03/rm">

<Header>

<wsrm:Sequence>

<wsu:Identifier>

http://www.xmlrc.com/railco/seq22231

</wsu:Identifier>

<wsrm:MessageNumber>

15

</wsrm:MessageNumber>

<wsrm:LastMessage/>

</wsrm:Sequence>

</Header>

<Body>

...

</Body>

</Envelope>

H. Paik (CSE, UNSW) ws-foundation Week 2/3 101 / 125

Reliable Messaging (Blue Book Chap. 17)
An example:
<Envelope

xmlns="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2004/03/rm">

<Header>

<wsrm:SequenceAcknowledgement>

<wsu:Identifier>

http://www.xmlrc.com/railco/seq22231

</wsu:Identifier>

<wsrm:AcknowledgementRange Upper="4" Lower="1"/>

<wsrm:AcknowledgementRange Upper="8" Lower="6"/>

<wsrm:AcknowledgementRange Upper="12" Lower="11"/>

<wsrm:AcknowledgementRange Upper="15" Lower="14"/>

</wsrm:SequenceAcknowledgement>

</Header>

<Body>

...

</Body>

</Envelope>

H. Paik (CSE, UNSW) ws-foundation Week 2/3 102 / 125

Summary

Binding in WSDL defines (i) message encoding format (ii) transport
protocol details. (...) and (...) are two options available in
<soap:binding style=’...’>.

A SOAP server employs a pipeline based SOAP message processing
model which includes: a sender, ultimate receiver and a series of (...).

Each (...) is responsible for processing a (...)

Can you roughly draw a diagram to illustrate how in-bound and
out-bound SOAP messages are handled by a SOAP server?

Why, would you say, is this type of processing model important in
using SOAP for WS communication?

SOAP message body can contain a normal response or a fault
through (...)

Where are the details of faults (if any) by a service declared ?

H. Paik (CSE, UNSW) ws-foundation Week 2/3 103 / 125

Part VI

UDDI - Advertising/Discovering Services

H. Paik (CSE, UNSW) ws-foundation Week 2/3 104 / 125

Service Registries

To discover Web services, a service registry is needed. This requires
describing and registering the Web service.

Publication of a service requires proper description of a Web service
in terms of business, service, and technical information.

Registration deals with persistently storing the Web service
descriptions in the Web services registry.

Two types of registries can be used:
The document-based registry: enables its clients to publish
information, by storing XML-based service documents such as business
profiles or technical specifications (including WSDL descriptions of the
service).
The meta-data-based service registry: captures the essence of the
submitted document.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 105 / 125

Service Discovery

Service discovery is the process of locating Web service providers,
and retrieving Web services descriptions that have been previously
published.

Interrogating services involve querying the service registry for Web
services matching the needs of a service requestor.

A query consists of search criteria such as: the type of the desired
service, preferred price and maximum number of returned results, and
is executed against service information published by service provider.

After the discovery process is complete, the service developer or client
application should know the exact location of a Web service (URI), its
capabilities, and how to interface with it.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 106 / 125

Types of service discovery

Static:

The service implementation details are bound at design time and a service
retrieval is performed on a service registry.

The results of the retrieval operation are examined usually by a human
designer and the service description returned by the retrieval operation is
incorporated into the application logic.

Dynamic:

The service implementation details are left unbound at design time so that
they can be determined at run-time.

The Web service requestor has to specify preferences to enable the
application to infer/reason which Web service(s) to choose

Based on application logic quality of service considerations such as best
price, performance or security certificates. The application chooses the most
appropriate service, binds to it, and invokes it.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 107 / 125

UDDI

Universal Description Discovery and Integration

Service

Service
Registry

Service
Requestor

Service
Provider

Service
Description

Service
Description

In UDDI

Using
SOAP

In Your
Own

Language

In WSDL

Find

Bind

Publish

H. Paik (CSE, UNSW) ws-foundation Week 2/3 108 / 125

UDDI and the big idea

UDDI Business Registry

1. SW companies, standard bodies,
and programmers populate the
registry with description of
various types of services

2. Businesses populate
the registry with
descriptions of the
services
they support

3. UBR assigns a unique
identifier to each service and
business registration

4. Marketplaces,
search engines and

business apps query the
registry to

discover services at
other companies

5. Business uses this data
to facilitate easier

integration with each
other over the web

Business
Registrations

Service Type
Registrations

H. Paik (CSE, UNSW) ws-foundation Week 2/3 109 / 125

UDDI and the big idea

How to find the service you want among a potentially large collection of
services and servers. The client does not necessarily need to know a priori
where the server resides or which server provides the service.

Service
Registry

Service
Requestor

Service
Provider

(1) Registration request
for service description

(2) Query for all
matching services in

the registry

(3) Discovery
results

(4) Request
for selected

service information

(5) Service
information of

selected service

(6) Invocation request
including inputs

(7) Invocation resutls

SEARCH

INVOKE

PUBLISH

H. Paik (CSE, UNSW) ws-foundation Week 2/3 110 / 125

UDDI

UDDI is a registry (not repository) of Web services

IBM and Microsoft *used* to host public UDDI registry

Before UDDI, there was no standard way of finding documentation or
the location of a particular remote object. Ad-hoc documentation
may look like:

Contact person: John Smith

COM+ Object: GetWeatherInfo

COMP+ Server: http://bindingpoint.com

Relative URL: /metero/weather

Proxy Location: /Instal/GetWeatherInfo.dll

Description: Returns today’s weather. It requires a zip code ...

UDDI is not part of W3C standard (unlike SOAP, WSDL)

The main standard body for it is OASIS http://www.oasis-open.org,
http://uddi.xml.org

H. Paik (CSE, UNSW) ws-foundation Week 2/3 111 / 125

http://www.oasis-open.org
http://uddi.xml.org

UDDI

UDDI shares similarities with telephone directories.

White Pages: Contact information about the service provider
company. This information includes the business or entity name,
address, contact information, other short descriptive information
about the service provider, and unique identifier with which to
facilitate locating this business

Yellow Pages: Categories under which Web services implementing
functionalities within those categories can be found

Green Pages: Technical information about the capabilities and
behavioral grouping of Web services

H. Paik (CSE, UNSW) ws-foundation Week 2/3 112 / 125

UDDI - overview of its data structure

UDDI Registry Entry

Business Entity
 name
 contacts
 description
 identifiers
 categories

Business Entity
 name
 contacts
 description
 identifiers
 categories

Business Service
 service key
 business key
 name
 description
 categories

Business Service
 service key
 business key
 name
 description
 categories

Binding Template
 binding key
 description
 access point

Binding Template
 binding key
 description
 access point

Binding Template
 binding key
 description
 access point

tModel
 name
 description
 overview document
 URL to specifications

WSDL document
(located at the
service provider's
site)

white page information

yellow page information

green page information

H. Paik (CSE, UNSW) ws-foundation Week 2/3 113 / 125

WSDL and UDDI Mapping (e.g., jUDDI Apache Project)

<import>

<service>

<port>

<import>

<binding>

<types>
<messages>
<portType>

businessEntity

businessService

bindingTemplate
 accessPoint=[access point]
 portType=[portType tModel]
 binding=[binding tModel]
 local name=[port local name]

tModel name=[binding local name]
 overviewURL=[wsdl location]

categoryBag
 type=binding
 namespace=[namespace]
 portType=[portType tModel]

tModel name=[binding local name]
 overviewURL=[wsdl location]

categoryBag
 type=portType
 namespace=[namespace]

<port>

WSDL

Service Implementation

Service Binding

Service Interface

UDDI

H. Paik (CSE, UNSW) ws-foundation Week 2/3 114 / 125

UDDI

UDDI registry can be browsed by human

UDDI registry can be programmatically accessed

Inquiry API: enable lookup of registry information

Publishers API: allow applications to register services

an XML schema for SOAP message is defined

SOAP is used as the communication protocol

An example implementation (jUDDI by Apache)
http://juddi.apache.org
http://juddi.apache.org/docs/3.2/juddi-client-guide/html/

H. Paik (CSE, UNSW) ws-foundation Week 2/3 115 / 125

UDDI’s provided APIs

UDDI provides a SOAP-based API to the business registry.

UDDI Inquiry APIs: includes operations to find registry entries.

Browse, Drilldown, Invocation Patterns

UDDI Publish APIs: operations to add, modify and delete entries in
the registry.

UDDI Security API: for access control to the UDDI registry.

UDDI Subscription API: for clients to subscribe to changes of
information in the UDDI registry.

UDDI Replication API: to perform replication of information across
nodes in a UDDI registry.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 116 / 125

UDDI’s provided APIs

White pages info.White pages info.

Yellow pages info.Yellow pages info.

Green pages info.Green pages info.

Technical info.Technical info.

Pointer to service descriptionPointer to service description

UDDI entryUDDI entry

ServiceService

UDDI
service
registry

ServiceService
descriptiondescription

Service
requestor

Service
provider

WSDLWSDL
serviceservice
descriptiondescription

Inquiry URL Publishing URL

SOAP-HTTP SOAP-HTTPS

H. Paik (CSE, UNSW) ws-foundation Week 2/3 117 / 125

Interaction with and between UDDIs

Service ProviderService Consumer

Web Service Interface

Web Service Description
Web Service Description

Web Service Interface

Web Service Description
Web Service Description

Publisher APIInquiry API

Subscription,
Replication,
Transfer API
(HTTPS/SOAP)

HTTP/SOAP SOAP/HTTPS

H. Paik (CSE, UNSW) ws-foundation Week 2/3 118 / 125

How UDDI could play out: an opinion (Webber Book pp.136-141)

Question: Is it reasonable to assume that “people” will search a service
registry using APIs to select a service during design time?

Most likely no ... that’s just not how “people” do business

You will browse, ask around (word of mouth), google, etc.

Oftentimes, the selection criteria can be tricky (e.g., existing business
relationships, cutting deals, etc.)

If UDDI is not going to be useful in selecting services ... then what?

Note: Most of the UDDI registries in place today are private registries
operating inside companies or maintained by a set of companies in a
private manner

H. Paik (CSE, UNSW) ws-foundation Week 2/3 119 / 125

How UDDI could play out: an opinion (Webber Book pp.136-141)

... UDDI might be useful at runtime ...

Case 1: Service Life-cycle Management

Consider the issues you have to deal with after Web services are deployed
and clients are using them

Overtime, some changes might have to be made (not only the code,
but also the physical environment that the service is deployed in)

e.g., migration to a new server, multiple mirror servers, routine
maintenance on the server ...

Applications that rely on Web services need to stay updated with the
latest access end-point information

How do we propagate the changes to the access point?

UDDI can play the runtime broker/middleman in handling and propagating
these changes ...

H. Paik (CSE, UNSW) ws-foundation Week 2/3 120 / 125

How UDDI could play out: an opinion (Webber Book pp.136-141)

Scenario: Service Life-cycle management with UDDI

A Web service is selected for use (searched in or outside UDDI)

Save (in your local database) the bindingTemplate information of the
service from UDDI

Develop an application using the service

If the service call fails (or times out):

query UDDI for the lastest information

compare the info. with the saved info.

if different, try calling the service again with the new info.

update your local bindingTemplate if needed

H. Paik (CSE, UNSW) ws-foundation Week 2/3 121 / 125

How UDDI could play out: an opinion (Webber Book pp.136-141)

... UDDI might be useful at runtime ...

Case 2: Dynamic access point management

Not only when a service call is failed, you may want to dynamically
manage and select the most appropriate access point for a service.

A service may be available from multiple geographical locations

The client application may have been developed in one country and
later used in another county

The concept is similar to downloading files from different mirror sites.
The access point can be hardwired in the client application, but by
dynamically selecting the most appropriate access point (based on certain
criteria) may lead to increased performanace.

H. Paik (CSE, UNSW) ws-foundation Week 2/3 122 / 125

How UDDI could play out: an opinion (Webber Book pp.136-141)

UDDI
Registry

Service
Aggregator

Access

Web Portal
Access

Direct
Programmatic

Acess

Direct
Programmatic

Acess

Design-time
Access to UDDI

Run-time
Access to UDDI

Accessing UDDI:

Desgin time access – via manual search or direct API acccess, to search
and discover services during the application design phase

Runtime access (UDDI playing a brokering/middleman role) – via direct
API access, it offers possibilities to build more robust and flexible
applications

H. Paik (CSE, UNSW) ws-foundation Week 2/3 123 / 125

Static Discovery of Web Services ...

There are some public Web service registries operating (not following
UDDI):

XMETHODS (seems to be offline nowadays):
http://www.xmethods.net/ve2/Directory.po

WebserviceX.NET:
http://www.webservicex.net/WS/wscatlist.aspx

WebServiceList:
http://www.webservicelist.com (with user rating info)

H. Paik (CSE, UNSW) ws-foundation Week 2/3 124 / 125

http://www.xmethods.net/ve2/Directory.po
http://www.webservicex.net/WS/wscatlist.aspx
http://www.webservicelist.com

Summary

Can you describe a service registration process and a service discovery
process?

What is the purpose of a WSDL to UDDI mapping model?

Can you list some of the operations in UDDI API?

Alternative/suggested use of UDDI ...?

H. Paik (CSE, UNSW) ws-foundation Week 2/3 125 / 125

	Web Services - Introduction
	SOAP
	WSDL
	Service Implementation and Deployment
	More on SOAP/WSDL
	UDDI - Advertising/Discovering Services

