Search and Planning

COMP3431 Robot Software Architectures

So far ...

 Simple behaviour-based robots with no world
model

* Robots that build models of space around them
and remember events

e Robots that can use abstract models to answer
guestions and derive relations

This time ...

* Using abstract representations to plan and solve
problems

Search

Search

e Search is fundamental to Al

 We usually deal with problems that have no direct
solution

* Must choose between alternatives

State Transition Graph

Oradea
b Neamt
Zerind
75 151
Ara 140
Sibiu o Fagaras
w Vaslui
80
Timisoara Rimnicu Vilcea
70 08 .
. 146 85 | Hirsova
Mehadia 101 tziceni
86
" 138 ucharest
Dobreta 120
. 90
ralova Eforie

Giurgiu

Problem Formulation

Sets of states: description of one instant in time
Initial state: where are we starting from?
Actions: set of available actions

Transition model: effect of each action

Goal test: have we finished?

Path cost: transitions may have different cost

Search for Solutions

* Expand a node generating parent and child nodes

* Create frontier list (or open list)

e Search strategy: order in which frontier is
expanded

Example

"
Initial state
_Arad D
After expanding Arad S Cimisoa CZoind D

After expanding Sibiu

Uninformed Search

* Have no additional information beyond problem
definition

* Depth-first

 Breadth-First

Depth-First Search

Breadth-First Search

>@ (4
> (&) O

D) (B) >O@® ® & @

Depth-First Search

def dfs(start):
frontier = [start]
while frontier != []:
first, rest = frontier[0@], frontier[1l:]
print(“Node *”, first.id)

frontier = first.neighbours + rest

Breadth-First Search

def dfs(start):
frontier = [start]
while frontier != []:
first, rest = frontier[0@], frontier[1l:]
print(“Node *”, first.id)

frontier = rest + first.neighbours

iterative Deepening

e Depth-first to a limited depth
* Increase limit it goal not reached

Limit = 3 *@ PO PO PON

@ O o o @ O
() ® 0,
'@ O
e @ e e
/g; "o ‘g; o ‘gj ~o ‘gj ~o
R C ® 0 ® R ® R
[7o) o0 [X RoJo (X X B¢

PN PN PN PNy
Co e o &M o &M o

XXX XXX 000000 0000060

Informed (Heuristic) Search

e Use a heuristic (informed guess) to estimate cost to
goal

e (Greedy search expands nodes with lowest cost first

253

Greedy Search

A* Search

Minimises total cost
Jf(n)=gn)+h(n)
g Is the cost to reach the node n, known exactly

h heuristic that guesses the cost to go form » to the
goal

his admissible if it never overestimates the cost

Arad

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

671=291+380

History of A*

* Invented for Shakey:

Hart, P. E., Nilsson, N. J. and Raphael, B. (1968). A
Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics SSC4. 4 (2): 100-107.

» Shakey also gave rise to a planning framework that
s still used

Acknowledgments

 Examples from:

Russell, S. and Norvig, P. (2010). Artificial
Intelligence: A Modern Approach (3rd Edition).
Prentice Hall.

Graph Search in Prolog

Graph Representation

A graph may be represented by a set of edge predicates and a list of vertices.

edge(1l, 5). edge(1l, 7)
edge(2, 1). edge (2, 7)
edge(3, 1). edge(3, 6).
edge(4, 3). edge(4, 5)
edge(5, 8).

edge(6, 4). edge(6, 5).
edge(7, 5).

edge(8, 6). edge(8, 7).

FINding a patnh

« Write a program to find path from one node to another.
* Must avoid cycles (i.e. going around in circle).
* Atemplate for the clause is:
path(Start, Finish, Visited, Path).
Start is the name of the starting node
Finish is the name of the finishing node
Visited is the list of nodes already visited.

Path is the list of nodes on the path, including Start and Finish.

The path program

* The search for a path terminates when we have nowhere to go.
path(Node, Node, _, [Node]).

* A path from Start to Finish starts with a node, X, connected to Start
followed by a path from X to Finish.

path(Start, Finish, Visited, [Start | Path]) :-
edge(Start, X),
not (member (X, Visited)),
path(X, Finish, [X | Visited], Path).

member (X, [X]| 1).
member (X, [_|Y]) :- member(X, Y).

Hamiltonian Paths

A Hamiltonian path is a path which spans the entire graph
without any repetition of nodes in the path.

hamiltonian(P) :- subset([],) :- !.
vertices(V), subset ([A|B], C) :-
member (S, V),
path(S, , [S], P),
subset (V, P). subset (B, C).

member (A, C),

:— hamiltonian(P).

4]

(2, 1, 7, 5, 8, 6, 4, 3]
[27 7’ 5’ 8’ 6’ 4’ 3’ 1]

v,

Missionaries and Cannibals

e There are three missionaries and three cannibals on the
left bank of a river.

* They wish to cross over to the right bank using a boat that
can only carry two at a time.

e The number of cannibals on either bank must never
exceed the number of missionaries on the same bank,

otherwise the missionaries will become the cannibals'
dinner!

* Plan a sequence of crossings that will take everyone safely
across.

Representing the state

A state is one "snapshot’ in time.

For this problem, the only information we need to fully characterise the
state is:

* the number of missionaries on the left bank,

e the number of cannibals on the left bank,

* the side the boat is on.
All other information can be deduced from these three items.
In Prolog, the state can be represented by a 3-arity term,

state(Missionaries, Cannibals, Side)

Representing the Solution

The solution consists of a list of moves, e.g.
[move(l, 1, right), move(2, 0, left)]

which we will take to mean that 1T missionary and 1 cannibal moved to the

right bank, then 2 missionaries moved to the left bank.

Like the graph search problem, we must avoid returning to a state we have

visited before.

The visited list will have the form:

[MostRecent State | ListOfPreviousStates]

Overview of Solution

« We follow a simple graph search procedure:

e Start from an initial state

Find a neighbouring state

Check that the new state has not been visited before

Find a path from the neighbour to the goal.
e The search terminates when we have found the state:

state(0, O, right).

Top-level Prolog Code

mandc(CurrentState, Visited, Path)

mandc(state(0, O, right), _, []).

mandc(CurrentState, Visited, [Move | RestOfMoves]) :-
newstate(CurrentState, NextState),
not(member(NextState, Visited)),
make_move(CurrentState, NextState, Move),
mandc(NextState, [NextState | Visited], RestOfMoves).

make_move(state(M1, C1, left), state(M2, C2, right), move(M, C, right)) :-
M is M1 - M2,
CisC1-C2.

make_move(state(M1, C1, right), state(M2, C2, left), move(M, C, left)) :-
M is M2 - M1,
CisC2-C1.

Possible Moves

A move is characterised by the number of missionaries
and the number of cannibals taken in the boat at one time.

e Since the boat can carry no more than two people at once,
the only possible combinations are:

Where carry(M, C) means the boat will carry M, missionaries
and C, cannibals on one trip.

Feasible Moves

Once we have found a possible move, we have to confirm that it is feasible.

|.e. it is not feasible to move more missionaries or more cannibals than are
present on one bank.

When the state is state(M1, C1, left) and we try carry(M, C) then
M <=M1and C <= C1
must be true.
When the state is state(M1, C1, right) and we try carry(M, C) then
M+M1<=3and C +C1<=3

must be true.

| egal Moves

e Once we have found a feasible move, we must check
that is legal.

e |.2. NO Missionaries must be eaten.

legal (X, X) := 1!.
legal(3, X) := 1.
legal (0, X).

* The only safe combinations are when there are equal
numbers of missionaries and cannibals or all the
missionaries are on one side.

Generating the next state

newstate(state(M1l, Cl, left), state(M2, C2, right)) :-
carry(M, C),
M <= M1,
C <= C1,
M2 is M1 - M,
C2 is Cl1 - C,
legal (M2, C2).
newstate(state(M1l, Cl1l, right), state(M2, C2, left)) :-
carry(M, C),
M2 is M1 + M,
C2 is Cl1 + C,
M2 <= 3,
C2 <= 3,
legal (M2, C2).

Exercise - Constraint Satisfaction

In five houses, each with a different colour, live five people of different nationalities,
each of whom prefers a different brand of chocolates, a different drink, and a
different pet. Given the following facts, answer the questions: “Where does the
zebra live, and in which house do they drink water?”

* The Englishman lives in the red house.

* The Spaniard owns the dog.

* The Norwegian lives in the first house on the left.

* The green house is immediately to the right of the ivory house.

* The man who eats Cadburys lives in the house next to the man with the fox.
» Kit Kats are eaten in the yellow house.

* The Norwegian lives next to the blue house.

 The Smarties eater owns snails.

* The Snickers eater drinks orange juice.

e The Ukrainian drinks tea.

* The Japanese eats Milky Ways.

» Kit Kats are eaten in a house next to the house where the horse is kepit.
« Coffee is drunk in the green house.

* Milk is drunk in the middle house.

