
Planning
COMP3431 Robot Software Architectures

Planning

A planner finds sequences of actions that will cause
transitions from an initial state through intermediates
states to a goal state

Actions

• Transitions from one state to the next are achieved
by actions.

• Must specify how actions work

• Must work out correct sequence of actions to reach
goal

Action Models

• Action action(<parameters>)

• PRECOND: <conditions that must be true to
apply this actions>

• EFFECTS: <conditions that become true or false
after executing the action>

Action Example

Action Fly(p, from, to)
PRECOND: Plane(p) ∧ At(p, from) ∧ Airport(from) ∧ Airport(to)
EFFECT: ¬At(p, from) ∧ At(p, to))

• positive and negative literals in effects can be separated
into an add list and and delete list

Example
Init: Airport(MEL) ∧ Airport(SYD) ∧ Plane(P1) ∧ Plane(P2) ∧ Cargo(C1) ∧ Cargo(C2) ∧  

At(C1, SYD) ∧ At(C2, MEL) ∧ At(P1, SYD) ∧ At(P2, MEL)

Goal: At(C1, MEL) ∧ At(C2, SYD)

Action Load(c, p, a)

PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)

EFFECT: ¬ At(c, a) ∧ In(c, p)

Action Unload(c, p, a)

PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)

EFFECT: At(c, a) ∧ ¬ In(c, p)

Action Fly(p, from, to)

PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

EFFECT: ¬ At(p, from) ∧ At(p, to)

Load(C1, P1, SYD)

Fly(P1, SYD, MEL)

Unload(C1, P1, MEL)

Load(C2, P2, MEL)

Fly(P2, MEL, SYD)

Unload(C2, P2, SYD)

Progression and Regression
• Forward Search

• Backward Search

Backward Regression

• g’ is the regression from goal g over action a

• I.e. going backwards from g, we look for an action,
a, that has preconditions and effects that satisfy g’

g ' = (g − Add(a))∪Precond(a)

Planning and TR Programs

• TR Programs list
actions from a plan,
keeping preconditions

• Each rule below
should be the
regression of the rule
above

Action :-
goal → do_nothing
precond → action

….
start → action

Sussman’s Anomaly
• Goal: On(A, B) ∧ On(B, C)

• Try achieving On(A, B) first

[move(c,a,floor), move(a,floor,b),
move(a,b,floor), move(b,floor,c)]

• Trying On(B, C) first

[move(b,floor,c), move(b,c,floor),
move(c,a,floor), move(a,floor,b)]

• Should be:

[move(c,a,floor), move(b,floor,c), move(a,floor,b)]

WARPLAN
Warren, D. H. D. (1974). Warplan: A system for generating plans. 

Memo No. 76, Department of Computational Logic, University of Edinburgh.

• WARPLAN tries to interleave actions by protecting
goals.

• Achieve on(A,B): [move(c,a,floor), move(a,floor,b)]

• Protect on(A,B)

• Now try on(B,C) by appending actions to end of plan

• If it tries to undo a protected goal, move
backwards through plan and try to slot new plan
in.

Warplan

• [move(c,a,floor), move(a,floor,b), move(a,b,floor), ..]

• [move(c,a,floor), .., move(a,floor,b)]

• check that goals before and after are preserved

Try inserting plan for on(B,C) here

Partially Ordered Plans

Partial-Order Planning
Init: Tire(Flat) ∧ Tire(Spare) ∧ At(Flat, Axle) ∧ At(Spare, Boot)

Goal: At (Spare, Axle)

ActionRemove(obj, loc)

PRECOND: At(obj, loc)

EFFECT: ¬ At(obj, loc) ∧ At(obj, Ground)

ActionPutOn(t, Axle)

PRECOND: Tire(t) ∧ At(t, Ground) ∧ ¬ At(Flat, Axle)

EFFECT: ¬ At(t, Ground) ∧ At(t, Axle)

Partial-Order Planning
Start Finish

At(Spare,Boot)

At(Flat,Axle)

At(Spare,Axle)

FinishPutOn(Spare,Axle)

Remove(Spare,Boot)

Start
At(Spare,Boot)

At(Flat,Axle)

At(Spare,Axle) At(Spare,Ground)

¬ At(Flat,Axle)

At(Spare,Boot)

FinishPutOn(Spare,Axle)

Remove(Spare,Boot)

Remove(Flat,Axle)

Start
At(Spare,Boot)

At(Flat,Axle)

At(Spare,Axle) At(Spare,Ground)

¬ At(Flat,Axle)

At(Spare,Boot)

At(Flat,Axle)

Forward Planning

• Forward planners are now among the best.

• Use heuristics to estimate costs

• Possible to use heuristic search, like A*, to reduce
branching factor.

Planning graphs
• Used to achieve better heuristic estimates.

• A solution can also directly extracted using GRAPHPLAN.

• Consists of a sequence of levels that correspond to time steps in the plan.

• Level 0 is the initial state.

• Each level consists of a set of literals and a set of actions.

• Literals = all those that could be true at that time step, depending
upon the actions executed at the preceding time step.

• Actions = all those actions that could have their preconditions
satisfied at that time step, depending on which of the literals actually
hold.

Planning graphs

• Records only a restricted subset of possible
negative interactions among actions

• They work only for propositional problems.

Example
Init: Have (Cake)

Goal: Have(Cake) ∧ Eaten(Cake)

Action: Eat (Cake)
PRECOND: Have(Cake)

EFFECT: ¬ Have(Cake) ∧ Eaten(Cake)

Action: Bake (Cake)

PRECOND: ¬ Have(Cake)
EFFECT: Have(Cake)

Cake example

• Start at level S0 and determine action level A0 and next level S1.
• A0 >> all actions whose preconditions are satisfied in the previous level.
• Connect precond and effect of actions S0 --> S1
• Inaction is represented by persistence actions.

• Level A0 contains the actions that could occur
• Conflicts between actions are represented by mutex links

Cake example

• Level S1 contains all literals that could result from picking any subset of actions in A0
• Conflicts between literals that can not occur together (as a consequence of the selection

action) are represented by mutex links.
• S1 defines multiple states and the mutex links are the constraints that define this set of states.

• Continue until two consecutive levels are identical: leveled off
• Or contain the same amount of literals (explanation follows later)

Cake example

• A mutex relation holds between two actions when:
• Inconsistent effects: one action negates the effect of another.
• Interference: one of the effects of one action is the negation of a precondition of the other.
• Competing needs: one of the preconditions of one action is mutually exclusive with the precondition of the other.

• A mutex relation holds between two literals when (inconsistent support):
• If one is the negation of the other OR
• if each possible action pair that could achieve the literals is mutex.

PG and heuristic estimation
• PG’s provide information about the problem

• A literal that does not appear in the final level of the graph cannot be achieved
by any plan.

• Useful for backward search (cost = inf).

• Level of appearance can be used as cost estimate of achieving any goal
literals = level cost.

• Small problem: several actions can occur

• Restrict to one action using serial PG (add mutex links between every pair
of actions, except persistence actions).

• Cost of a conjunction of goals? Max-level, sum-level and set-level heuristics.

• PG is a relaxed problem.

The GRAPHPLAN Algorithm

How to extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure
 graph ← INITIAL-PLANNING-GRAPH(problem)
 goals ← GOALS[problem]
 loop
 if goals all non-mutex in last level of graph then
 solution ← EXTRACT-SOLUTION(graph, goals, LENGTH(graph))
 if solution ≠ failure then return solution
 else if NO-SOLUTION-POSSIBLE(graph) then return failure
 graph ← EXPAND-GRAPH(graph, problem)

Example: Spare tire problem
Init(At(Flat, Axle) ∧ At(Spare,Trunk))

Goal(At(Spare,Axle))

Action(Remove(Spare,Trunk)

 PRECOND: At(Spare,Trunk)

 EFFECT: ¬At(Spare,Trunk) ∧ At(Spare,Ground))

Action(Remove(Flat,Axle)

 PRECOND: At(Flat,Axle)

 EFFECT: ¬At(Flat,Axle) ∧ At(Flat,Ground))

Action(PutOn(Spare,Axle)

 PRECOND: At(Spare,Groundp) ∧¬At(Flat,Axle)

 EFFECT: At(Spare,Axle) ∧ ¬At(Spare,Ground))

Action(LeaveOvernight

 PRECOND:

 EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,trunk) ∧ ¬ At(Flat,Ground) ∧ ¬ At(Flat,Axle))

GRAPHPLAN example

• Initially the plan consist of literals from the initial state and literals from the
closed world assumption (S0).

• Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)
• Also add persistence actions and mutex relations.
• Add the effects at level S1
• Repeat until goal is in level Si

GRAPHPLAN example

• EXPAND-GRAPH also looks for mutex relations
• Inconsistent effects

• E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare,Ground) and not At(Spare, Ground)
• Interference

• E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not At(Flat,Axle) as EFFECT
• Competing needs

• E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not At(Flat, Axle)
• Inconsistent support

• E.g. in S2, At(Spare,Axle) and At(Flat,Axle)

GRAPHPLAN example

• In S2, the goal literals exist and are not mutex with any other
• Solution might exist and EXTRACT-SOLUTION will try to find it

• EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a search
process:

• Initial state = last level of PG and goal goals of planning problem
• Actions = select any set of non-conflicting actions that cover the goals in the state
• Goal = reach level S0 such that all goals are satisfied
• Cost = 1 for each action.

GRAPHPLAN example

• Termination? YES

• PG are monotonically increasing or decreasing:

• Literals increase monotonically

• Actions increase monotonically

• Mutexes decrease monotonically

• Because of these properties and because there is a finite number of actions and literals, every
PG will eventually level off !

Extracting the Plan

• Heuristic forward search planners, like Lama, use
A* to find path from start to goal

• Cost is based on level in graph

• Answer Set Programming is a very efficient type of
constraint solving that is fast but only works on
propositional representations

