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Planning

A planner finds sequences of actions that will cause 
transitions from an initial state through intermediates 
states to a goal state



Actions

• Transitions from one state to the next are achieved 
by actions. 

• Must specify how actions work 

• Must work out correct sequence of actions to reach 
goal



Action Models

• Action action(<parameters>) 

• PRECOND: <conditions that must be true to 
apply this actions> 

• EFFECTS: <conditions that become true or false 
after executing the action>



Action Example

Action Fly(p, from, to)
PRECOND: Plane(p) ∧ At(p, from) ∧ Airport(from) ∧ Airport(to)
EFFECT: ¬At(p, from) ∧ At(p, to))

• positive and negative literals in effects can be separated 
into an add list and and delete list



Example
Init: Airport(MEL) ∧ Airport(SYD) ∧ Plane(P1) ∧ Plane(P2) ∧ Cargo(C1) ∧ Cargo(C2) ∧  

At(C1, SYD) ∧ At(C2, MEL) ∧ At(P1, SYD) ∧ At(P2, MEL)

Goal: At(C1, MEL) ∧ At(C2, SYD)

Action Load(c, p, a)

PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a) 

EFFECT: ¬ At(c, a) ∧ In(c, p)

Action Unload(c, p, a)

PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a) 

EFFECT: At(c, a) ∧ ¬ In(c, p)

Action Fly(p, from, to)

PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

EFFECT: ¬ At(p, from) ∧ At(p, to)

Load(C1, P1, SYD) 

Fly(P1, SYD, MEL) 

Unload(C1, P1, MEL) 

Load(C2, P2, MEL) 

Fly(P2, MEL, SYD) 

Unload(C2, P2, SYD)



Progression and Regression
• Forward Search 

• Backward Search



Backward Regression

• g’ is the regression from goal g over action a 

• I.e. going backwards from g, we look for an action, 
a, that has preconditions and effects that satisfy g’ 

g ' = (g − Add(a))∪Precond(a)



Planning and TR Programs

• TR Programs list 
actions from a plan, 
keeping preconditions 

• Each rule below 
should be the 
regression of the rule 
above 

Action :- 
goal   → do_nothing 
precond → action 

…. 
start   → action



Sussman’s Anomaly
• Goal: On(A, B) ∧ On(B, C) 

• Try achieving On(A, B) first 

[move(c,a,floor), move(a,floor,b), 
move(a,b,floor), move(b,floor,c)] 

• Trying On(B, C) first 

[move(b,floor,c), move(b,c,floor), 
move(c,a,floor), move(a,floor,b)] 

• Should be: 

[move(c,a,floor), move(b,floor,c), move(a,floor,b)]



WARPLAN 
Warren, D. H. D. (1974). Warplan: A system for generating plans. 

Memo No. 76, Department of Computational Logic, University of Edinburgh.

• WARPLAN tries to interleave actions by protecting 
goals. 

• Achieve on(A,B): [move(c,a,floor), move(a,floor,b)] 

• Protect on(A,B) 

• Now try on(B,C) by appending actions to end of plan 

• If it tries to undo a protected goal, move 
backwards through plan and try to slot new plan 
in.



Warplan

• [move(c,a,floor), move(a,floor,b), move(a,b,floor), ..] 

• [move(c,a,floor), .., move(a,floor,b)] 

• check that goals before and after are preserved

Try inserting plan for on(B,C) here



Partially Ordered Plans



Partial-Order Planning
Init: Tire(Flat) ∧ Tire(Spare) ∧ At(Flat, Axle) ∧ At(Spare, Boot)

Goal: At (Spare, Axle)

ActionRemove(obj, loc)

PRECOND: At(obj, loc) 

EFFECT: ¬ At(obj, loc) ∧ At(obj, Ground)

ActionPutOn(t, Axle)

PRECOND: Tire(t) ∧ At(t, Ground) ∧ ¬ At(Flat, Axle) 

EFFECT: ¬ At(t, Ground) ∧ At(t, Axle)



Partial-Order Planning
Start Finish

At(Spare,Boot) 

At(Flat,Axle) 

At(Spare,Axle) 

FinishPutOn(Spare,Axle)

Remove(Spare,Boot)

Start
At(Spare,Boot) 

At(Flat,Axle) 

At(Spare,Axle) At(Spare,Ground) 

¬ At(Flat,Axle) 

At(Spare,Boot) 

FinishPutOn(Spare,Axle)

Remove(Spare,Boot)

Remove(Flat,Axle)

Start
At(Spare,Boot) 

At(Flat,Axle) 

At(Spare,Axle) At(Spare,Ground) 

¬ At(Flat,Axle) 

At(Spare,Boot) 

At(Flat,Axle) 



Forward Planning

• Forward planners are now among the best. 

• Use heuristics to estimate costs 

• Possible to use heuristic search, like A*, to reduce 
branching factor.



Planning graphs
• Used to achieve better heuristic estimates. 

• A solution can also directly extracted using GRAPHPLAN. 

• Consists of a sequence of levels that correspond to time steps in the plan. 

• Level 0 is the initial state. 

• Each level consists of a set of literals and a set of actions. 

• Literals = all those that could be true at that time step, depending 
upon the actions executed at the preceding time step. 

• Actions = all those actions that could have their preconditions 
satisfied at that time step, depending on which of the literals actually 
hold.



Planning graphs

• Records only a restricted subset of possible 
negative interactions among actions 

• They work only for propositional problems.



Example
Init: Have (Cake )

Goal: Have(Cake) ∧ Eaten(Cake)

Action: Eat (Cake ) 
PRECOND: Have(Cake) 

EFFECT: ¬ Have(Cake) ∧ Eaten(Cake)

Action: Bake (Cake ) 

PRECOND: ¬ Have(Cake)
EFFECT: Have(Cake) 



Cake example

• Start at level S0 and determine action level A0 and next level S1. 
• A0 >> all actions whose preconditions are satisfied in the previous level. 
• Connect precond and effect of actions S0 --> S1 
• Inaction is represented by persistence actions. 

• Level A0 contains the actions that could occur 
• Conflicts between actions are represented by mutex links



Cake example

• Level S1 contains all literals that could result from picking any subset of actions in A0 
• Conflicts between literals that can not occur together (as a consequence of the selection 

action) are represented by mutex links. 
• S1 defines multiple states and the mutex links are the constraints that define this set of states. 

• Continue until two consecutive levels are identical: leveled off 
• Or contain the same amount of literals (explanation follows later)



Cake example

• A mutex relation holds between two actions when: 
• Inconsistent effects: one action negates the effect of another. 
• Interference: one of the effects of one action is the negation of a precondition of the other. 
• Competing needs: one of the preconditions of one action is mutually exclusive with the precondition of the other. 

• A mutex relation holds between two literals when (inconsistent support): 
• If one is the negation of the other OR  
• if each possible action pair that could achieve the literals is mutex. 



PG and heuristic estimation
• PG’s provide information about the problem 

• A literal that does not appear in the final level of the graph cannot be achieved 
by any plan. 

• Useful for backward search (cost = inf). 

• Level of appearance can be used as cost estimate of achieving any goal 
literals = level cost. 

• Small problem: several actions can occur 

• Restrict to one action using serial PG (add mutex links between every pair 
of actions, except persistence actions). 

• Cost of a conjunction of goals? Max-level, sum-level and set-level heuristics. 

• PG is a relaxed problem.



The GRAPHPLAN Algorithm

How to extract a solution directly from the PG 

function GRAPHPLAN(problem) return solution or failure 
 graph ← INITIAL-PLANNING-GRAPH(problem) 
 goals ← GOALS[problem] 
 loop 
  if goals all non-mutex in last level of graph then 
       solution ← EXTRACT-SOLUTION(graph, goals, LENGTH(graph)) 
       if solution ≠ failure then return solution 
       else if NO-SOLUTION-POSSIBLE(graph) then return failure 
   graph ← EXPAND-GRAPH(graph, problem)



Example: Spare tire problem
Init(At(Flat, Axle) ∧ At(Spare,Trunk)) 

Goal(At(Spare,Axle)) 

Action(Remove(Spare,Trunk) 

 PRECOND: At(Spare,Trunk)  

 EFFECT: ¬At(Spare,Trunk) ∧ At(Spare,Ground))  

Action(Remove(Flat,Axle) 

 PRECOND: At(Flat,Axle)  

 EFFECT: ¬At(Flat,Axle) ∧ At(Flat,Ground))  

Action(PutOn(Spare,Axle) 

 PRECOND: At(Spare,Groundp) ∧¬At(Flat,Axle) 

 EFFECT: At(Spare,Axle) ∧ ¬At(Spare,Ground)) 

Action(LeaveOvernight 

 PRECOND: 

 EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,trunk) ∧ ¬ At(Flat,Ground) ∧ ¬ At(Flat,Axle) )



GRAPHPLAN example

• Initially the plan consist of literals from the initial state and literals from the 
closed world assumption (S0). 

• Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0) 
• Also add persistence actions and mutex relations. 
• Add the effects at level S1 
• Repeat until goal is in level Si



GRAPHPLAN example

• EXPAND-GRAPH also looks for mutex relations 
• Inconsistent effects 

• E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare,Ground) and not At(Spare, Ground) 
• Interference  

• E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not At(Flat,Axle) as EFFECT 
• Competing needs 

• E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not At(Flat, Axle) 
• Inconsistent support 

• E.g. in S2, At(Spare,Axle) and At(Flat,Axle)



GRAPHPLAN example

• In S2, the goal literals exist and are not mutex with any other 
• Solution might exist and EXTRACT-SOLUTION will try to find it 

• EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a search 
process: 

• Initial state = last level of PG and goal goals of planning problem 
• Actions = select any set of non-conflicting actions that cover the goals in the state 
• Goal = reach level S0 such that all goals are satisfied 
• Cost = 1 for each action.



GRAPHPLAN example

• Termination? YES 

• PG are monotonically increasing or decreasing: 

• Literals increase monotonically 

• Actions increase monotonically 

• Mutexes decrease monotonically 

• Because of these properties and because there is a finite number of actions and literals, every 
PG will eventually level off !



Extracting the Plan

• Heuristic forward search planners, like Lama, use 
A* to find path from start to goal 

• Cost is based on level in graph 

• Answer Set Programming is a very efficient type of 
constraint solving that is fast but only works on 
propositional representations 


