Motion Planning

COMP3431 Robot Software Architectures

Motion Planning

- Task Planner can tell the robot discrete steps but can't say how to execute them
- Discrete actions must be turned into operations in a continuous world
- Planning actions set goals and constraints, something else must implement motor actions

Configuration Space

- Treat robot as a point, expand obstacles
- More complicated if robot is not a regular shape (piano movers problem)

Robotic Motion Planning: RRT's

Robotics Institute 16-735
http://www.cs.cmu.edu/~motion
Howie Choset
http://www.cs.cmu.edu/~choset

Rapidly-Exploring Random Tree

RI 16-735, Howie Choset with slides from James Kuffner

Path Planning with RRTs (Rapidly-Exploring Random Trees)

```
BUILD_RRT (q qinit ) {
    T.init(qinit);
    for }k=1\mathrm{ to K do
        q}\mp@subsup{q}{\mathrm{ rand }}{}=\mathrm{ RANDOM_CONFIG();
        EXTEND(T, q}\mp@subsup{q}{\mathrm{ rand }}{}
}
```


Path Planning with RRTs (Some Details)

$\operatorname{EXTEND}\left(T, q_{r a n d}\right)$

RRT vs. Exhaustive Search

- Discrete

A* may try all edges

- Continuous

Continuum of choices

Probabilistically subsample all edges

Naïve Random Tree

RRTs and
 Bias toward large Voronoi regions

http://msl.cs.uiuc.edu/rrt/gallery.html
RI 16-735, Howie Choset with slides from James Kuffner

Biases

- Bias toward larger spaces
- Bias toward goal
- When generating a random sample, with some probability pick the goal instead of a random node when expanding
- This introduces another parameter
- James' experience is that $5-10 \%$ is the right choice
- If you do this 100%, then this is a RPP

Grow two RRTs towards each other

RI 16-735, Howie Choset with slides from James Kuffner

A single RRT-Connect iteration...

RI 16-735, Howie Choset with slides from James Kuffner

1) One tree grown using random target

RI 16-735, Howie Choset with slides from James Kuffner

2) New node becomes target for other tree

RI 16-735, Howie Choset with slides from James Kuffner

3) Calculate node "nearest" to target

RI 16-735, Howie Choset with slides from James Kuffner

4) Try to add new collision-free branch

5) If successful, keep extending branch

5) If successful, keep extending branch

5) If successful, keep extending branch

RI 16-735, Howie Choset with slides from James Kuffner

6) Path found if branch reaches target

RI 16-735, Howie Choset with slides from James Kuffner

7) Return path connecting start and goal

RI 16-735, Howie Choset with slides from James Kuffner

Basic RRT-Connect

Instead of switching, use T_{a} as smaller tree. This helped James a lot

Articulated Robot

RI 16-735, Howie Choset with slides from James Kuffner

Highly Articulated Robot

RI 16-735, Howie Choset with slides from James Kuffner

Hovercraft with 2 Thusters

RI 16-735, Howie Choset with slides from James Kuffner

Out of This World Demo

RI 16-735, Howie Choset with slides from James Kuffner

Left-turn only forward car

RI 16-735, Howie Choset with slides from James Kuffner

Open Problems

Open Problems

- Rate of convergence
- Optimal sampling strategy?

Open Issues

- Metric Sensitivity
- Nearest-neighbor Efficiency

Applications of RRTs

Robotics Applications
mobile robotics
manipulation
humanoids
Other Applications
biology (drug design)
manufacturing and virtual prototyping (assembly analysis)
verification and validation
computer animation and real-time graphics aerospace
RRT extensions
discrete planning (STRIPS and Rubik's cube)
real-time RRTs
anytime RRTs
dynamic domain RRTs
deterministic RRTs
parallel RRTs
hybrid RRTs

RRT Summary

Advantages

- Single parameter
- Balance between greedy search and exploration
- Converges to sampling distribution in the limit
- Simple and easy to implement

Disadvantages

- Metric sensitivity
- Nearest-neighbor efficiency
- Unknown rate of convergence
- "long tail" in computation time distribution

Links to Further Reading

- Steve LaValle's online book: "Planning Algorithms" (chapters 5 \& 14) http://planning.cs.uiuc.edu/
- The RRT page:
http://msl.cs.uiuc.edu/rrt/
- Motion Planning Benchmarks Parasol Group, Texas A\&M http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp/

