
Compilation, Debugging and

Makefiles

Computing 2 17x1

THE C COMPILER (GCC)

 applies source-to-source transformation (pre-

processor)

 compiles source code to produce object files

 links object files and libraries to produce

executables

COMPILATION AND LINKING WITH GCC

 gcc –v

 Displays detailed information about the exact sequence of

commands used to compile and link a program

 gcc –c list.c

 Produces list.o from list.c and list.h

 gcc –c string.c

 Produces string.o from string.c and string.h

 gcc –c main.c

 Produces main.o from main.c, list.h, string.h

 gcc –o a.out main.o string.o list.o

 Links main.o, string.o, list.o and libraries to create an

executable called a.out

DEBUGGING

 Initial versions of programs always have errors

 Symptoms of errors

 Program quits with fatal error (eg segfault)

 Program runs forever (infinite loop)

 Program does not produce expected results

 Errors can be caused by

 Misunderstanding programming language constructs

 Misunderstanding the problem

 Incorrect logic

 Carelessness (uninitialized, off-by-one, pointers)

DEBUGGING

 Debugging: process of

 Finding the location/s of incorrect code

 Fixing incorrect code that causes error

 Debuggers: software tools that

 Assist in the process of debugging

 By allowing detailed observation of execution state

 Critical part of debugging

 Narrowing focus to small region of large code/state

DEBUGGING

 Testing can help debugging

 Test cases for boundary conditions (eg. Empty list)

 Sequence of tests revealing

 Trigger points .. ok before, fails after

 Patterns of behaviour … eg. Always one more than

expected

 Use deduction to identify/explain patterns.

 In general: run more tests before resorting to

debugger

GDB: THE GNU DEBUGGER

 gdb provides facilities to

 Control execution of program

 Step by step execution, breakpoints

 View intermediate state of program

 Values stored in program variables

 Plain gdb uses a command-line interface

 ddd provides a GUI wrapper around gdb.

 Must be compiled with –gdwarf-2 option

BASIC GDB COMMANDS

 quit: quits from gdb

 help [CMD] : on-line help

 run ARGS: run the program

 ARGS are whatever you normally use eg.

 $ xyz < data

 Would be run in gdb like

 (gdb) run < data

BASIC GDB COMMANDS

 where: stack trace

 Find which function the program was executing

when it crashed.

 Stack may also have references to system error-

handling functions

 up [N]: move down the stack

 Allows you to skip to scope of a particular function

 list [LINE]: show code

 Displays five lines either side of current statement

 print EXPR: display expression values

 EXPR may use (current values of) variables

GDB EXECUTION COMMANDS

 break [FUNC|LINE] : set break-point

 Stop execution and return control to gdb on entry to

function FUNC or on reaching line LINE

 next: single step (over functions)

 execute next statement

 if the statement is a function call, execute the whole

function

 step: single step (into functions)

 Execute next statement

 if statement is a function call, go to first statement in

function body

 For more details see gdb’s on-line help

EXERCISE: USING GDB TO FIND ERRORS

 What is the output of running this code?

int foo (int *p);

int main (void)

{ int *p = 0; /* null pointer */

 return foo (p);

}

int foo (int *p) {

 int y = *p; return y;

}

MAKEFILES

 Make is a software configuration tool that

 specifies dependencies between software components

 controls compilation when source code is updated

 produces "minimal required recompilation" on

update

 In fact, it can be used for any task which involves

 multiple inter-dependent files

 need to produce some files from others

MAKEFILES…

 make is driven by dependencies given in a

Makefile

 A dependency specifies

target : source1 source2 ...

commands to build target from sources

 e.g.

eva1: eval.o tokens.o stack1.o

gcc -o eva1 eval.o tokens.o stack1.o

 Rule: target is rebuilt if older than any sourcei

EXAMPLE MAKEFILE

game : main.o list.o string.o

 gcc -o game main.o list.o string.o -lm

main.o : main.c list.h string.h

 gcc -Wall -Werror –O -c main.c

list.o : list.c list.h

 gcc -Wall -Werror –O -c list.c

string.o : string.c

 gcc -Wall -Werror –O -c string.c

clean :

 rm -f *.o core

clobber : clean

 rm -f game

HOW MAKE WORKS

 The make command behaves as:

 make(target):

 Find makefile rule for the target

 for each S in Sources { make(S) }

 if (no sources OR any source is newer than target){

 perform Action to rebuild target

 }

EXAMPLE MAKEFILE REVISISTED

CC = gcc

CFLAGS = -Wall –Werror –O

game : main.o list.o string.o

 $(CC) -o game main.o list.o string.o

main.o : main.c list.h string.h

 $(CC) $(CFLAGS) -c main.c

list.o : list.c list.h

 $(CC) $(CFLAGS) -c list.c

Etc…

RUNNING MAKE

 To build the first target in the makefile just type

 make

 If make arguments are targets, build just those

targets:

 make world.o

 make clean

 make clobber

 The -n option instructs make

 to tell what it would do to create targets

 but don't execute any of the commands

