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SEARCHING (CONT) 

Searching is a very important/frequent operation. 

Several approaches have been developed: 

- O(n) ... linear scan   (search technique of last 

resort) 

- O(logn) ... binary search,  search trees   (trees 

also have other uses) 

- O(1) ... hash tables   (only O(1) under optimal 

conditions) 

 



SEARCHING (CONT) 

Linear structures: arrays, linked lists 

Arrays = random access.    

Lists = sequential access. 

 

Array List 

Unsorted 
O(n) 

(linear scan) 

O(n) 

(linear scan) 

Sorted 
O(log  n) 

(binary search) 

O(n) 

(linear scan) 



SEARCHING 

 Storing and searching sorted data: 

 Dilemma: Inserting into a sorted sequence 

 Finding the insertion point on an array – 

O(log n) but then we have to move 

everything along to create room for the new 

item 

 Finding insertion point on a linked list O(n) 

but then we can add the item in constant 

time. 

 Can  we get the best of both worlds? 

 



TREE TERMINOLOGY 

Trees are branched data structures  

 consisting of nodes (vertices) and links (edges), 

with no cycles  

 each node contains a data value (or key + data)  

 each node has links to ≤ k other nodes   (k=2 

below)  

 



TREES 

 Trees can be viewed as a set of nested structures: 

each node has k possibly empty subtrees  

 



USES OF TREES 

 Trees are used in many contexts, e.g. 

representing hierarchical data structures (e.g. 

expressions)  

 efficient searching (e.g. sets, symbol tables, ...)  

 



TREE TERMINOLGY 

 Level of a node in a tree (or depth) is one higher than 

the level of its parent  

 Depth of the root is 0 

 We call the length of the  longest path from the root to 

a node the height of a tree 
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SPECIAL PROPERTIES OF SOME TREES 

M-ary tree: each internal node has exactly 

M children 

Ordered tree: order of the children at every 

node is specified through constraints on the 

data/keys in the nodes 

Balanced tree: a tree with properties that 

 #nodes in left subtree = #nodes in right 

subtree 

 this property applies over all nodes in the 

tree 



BINARY TREES 

For much of this course, we focus on binary 

trees  

A binary tree (simplest type of M-ary tree) is 

defined recursively, as being either: 

 empty   (contains no nodes)  

 consisting of a node, with two sub-trees  

- each node contains a value  

- the left and right sub-trees are binary 

trees  

 



BINARY TREES: PROPERTIES 

 A binary tree with n 
nodes has a height of 

  at most  

n-1 (if degenerate)  ( 

an unbalanced tree, 

where for each parent 

node, there is only one 

child node ) 

  at least  

 floor(log2(n)) (if 

balanced) 



BINARY SEARCH TREE (BST) 

 A BST is an ordered binary tree that has: 

 all values in left sub-tree being less than root 

 all values in right sub-tree are greater than root 

 this property applies over all nodes in the tree 

 each node is the root of 0, 1 or 2 sub-trees 



BINARY TREES 

Shape of tree is determined by the order of 

insertion 

 



BINARY SEARCH TREES 

Depth of tree = max path length from root to leaf 

 

 

 

 

 

 

 

Depth of tree with n nodes:   min = floor(log2n),   max = n-1 

Height balanced tree:  ∀ nodes, depth(left subtree) ≅   

                                                    depth(right subtree) 

Time complexity of tree algorithms is typically O(depth) 

 

 



EXERCISE: INSERTION INTO BSTS 

 

 For each of the sequences below start from an 

initially empty binary search tree  

 show the tree resulting from inserting the 

values in the order given  

 What is the height of each tree? 

 (a)   4   2   6   5   1   7   3  

 (b)   5   3   6   2   4   7   1  

 (c)   1   2   3   4   5   6   7  

 



TREES: TRAVERSAL 

 For trees, several well-defined visiting orders exist:  

 Depth first traversals 

preorder (NLR) ... visit root, then left subtree, 

then right subtree  

inorder (LNR) ... visit left subtree, then root, 

then right subtree  

postorder (LRN) ... visit left subtree, then right 

subtree, then root  

 Breadth-first traversal or level-order ... visit root, 

then all its children, then all their children  

 



EXAMPLE OF TRAVERSALS ON A BINARY 

TREE 

 Pre-Order: 4 2 1 3 8 6 9 

 In-Order: 1 2 3 4 6 8 9 

 Post-Order 1 3 2 6 9 8 4 

 Level-Order: 4 2 8 1 3 6 9 



REPRESENTING BSTS  

A binary search tree is a generalization of a linked list: 

 nodes are a structure with two links to nodes 

 empty trees are NULL links 

typedef struct treenode *Treelink; 

 

struct treenode { 

   int data; 

   Treelink left, right; 

} 
   



REPRSENTING BSTS 

Abstract data vs concrete data 



BINARY SEARCH TREES 

Operations on BSTs: 

 traverse(TreeLink, (*visit)) … traverse tree  

 insert(TreeLink, Item) ... add new item to tree via 

key 

 delete(TreeLink, Item) ... remove item with specified 

key from tree 

 search(TreeLink,Item) ... find item containing key in 

tree 

 height(TreeLink) … compute depth of tree 

 nodes(TreeLink) … count #nodes in tree 

 plus, "bookeeping" ... new(), dispose(), show(), 

empty(), ... 

Notes: keys are unique   (not technically necessary) 

 

 



BINARY SEARCH TREES 

Traversal (with parameterised visit option) 

void traverse(TreeLink t, void (*visit)(Item)) { 

  

    if (t == null) return;  

    (*visit)(t);   // NLR traversal 

     traverse(t->left, visit);  

     // put "visit data" here for LNR  

     traverse(t->right, visit);  

     // put "visit data" here for LRN  

    } 



SEARCHING IN BSTS 

 Recursive version 

  
// Returns non-zero if item is found, 

// zero otherwise 

int search(TreeLink  n, Item i){ 

    int result; 

    if(n == NULL){ 

      result =  0; 

    }else if(i < n->data){ 

      result = search(n->left,i); 

    }else if(i > n->data) 

      result = search(n->right,i); 

    }else{ // you found the item  

      result = 1; 

    } 

    return result; 

}  

* Exercise: Try writing an iterative version 



INSERTION INTO A BST 

 Cases for inserting value V into tree T:  

 T is empty, make new node with V as root of new tree  

 root node contains V, tree unchanged (no dups)  

 V < value in root, insert into left subtree (recursive)  

 V > value in root, insert into right subtree (recursive)  

 Non-recursive insertion of V into tree T:  

 search to location where V belongs, keeping parent  

 make new node and attach to parent  

 whether to attach L or R depends on last move  

 



INSERTION INTO A BST 

//Returns the root of the tree 

//Inserts duplicates on theleft hand side of tree 

Treelink insertRec (Treelink tree, TreeItem item) { 

    if(tree == NULL){ 

        Treelink newNode = createNode(item); 

        return newNode; //now the root of the tree 

    } else { 

        if(item <= tree->item){ 

            tree->left = insertRec(tree->left, item); // 

        } else { 

            tree->right = insertRec(tree->right, item); 

        } 

    } 

    return tree; 

} 

  

 



DELETION FROM BSTS 

 Insertion into a binary search tree is easy: 

  find location in tree where node to be added  

 create node and link to parent  

Deletion from a binary search tree is 

harder:  

 find the node to be deleted and its parent  

 unlink node from parent and delete  

 replace node in tree by ... ???  

 



DELETION FROM BSTS… 

 Easy option ... don't delete; just mark node as 

deleted  

 future searches simply ignore marked nodes  

 If we want to delete, three cases to consider ... 

  zero subtrees ... unlink node from parent  

 one subtree ... replace node by child  

 two subtrees ... two children; one link in 

parent  

 



DELETION FROM BSTS 

 Case 1: value to be deleted is a leaf (zero 

subtrees)  



DELETION FROM BSTS 

 Case 1: value to be deleted is a leaf (zero 

subtrees)  



DELETION FROM BSTS 

 Case 2: value to be deleted has one subtree  

 



DELETION FROM BSTS 

 Case 2: value to be deleted has one subtree  

 



DELETION FROM BSTS 

 Case 3a: value to be deleted has two subtrees  

 Replace deleted node by its immediate successor 

 The smallest (leftmost) node in the right subtree  



DELETION FROM BSTS 

 Case : value to be deleted has two subtrees  



BINARY SEARCH TREE PROPERTIES 

 

 Cost for searching/deleting: 

 Worst case: key is not in BST – search the height 

of the tree 

Balanced trees – O(log2n) 

Degenerate trees – O(n) 

 Cost for insertion: 

 Always traverse the height of the tree 

Balanced trees – O(log2n) 

Degenerate trees – O(n) 

 

 



NEW BINARY SEARCH TREE 

// Item, Key, Node, Link, Tree types as before #define 

key(it) ((it).key)  

// operations on keys  

#define cmp(k1,k2) ((k1) - (k2)) 

#define lt(k1,k2) (cmp(k1,k2) < 0)  

#define eq(k1,k2) (cmp(k1,k2) == 0)  

#define gt(k1,k2) (cmp(k1,k2) > 0)  

// standard tree operations  

Tree newTree(); 

Tree insert(Tree, Item);  

Tree delete(Tree, Key);  

int find(Tree, Key);  



INSERTION USING NEW TREE ADT 

// more standard tree operations  

void dropTree(Tree);  

void showTree(Tree);  

int depth(Tree);  

int nnodes(Tree); // aka size() 

// functions internal to ADT 

Link rotateR(Link);  

Link rotateL(Link);  

Tree insertAtRoot(Tree, Item);  

Tree insertRandom(Tree, Item); 



INSERT AT ROOT - ROTATE OPERATIONS 



INSERT AT ROOT - ROTATE OPERATIONS 

Link rotateR(Link n1) {  

    if (n1 == NULL) return NULL;  

    Link n2 = n1->left;  

    if (n2 == NULL) return n1;  

    n1->left = n2->right;  

    n2->right = n1;  

    return n2; 

 }  

Left rotation is similar with n1/n2 and left/right switched 



INSERTION AT ROOT 

 Previous description of BSTs inserted at 

leaves. 

 Different approach: insert new value at root. 

 Method for inserting at root (recursive): 

 base case: 

 tree is empty; make new node and make it 

root 

 recursive case: 

 insert new node as root of L/R subtree 

 lift new node to root by R/L rotation 

 



INSERTION AT ROOT 



INSERTION AT ROOT (CONT) 

Tree insertAtRoot(Tree t, Item it) {  

    if (t == NULL) return newNode(item);  

    int diff = cmp(key(it), key(t->value));  

    if (diff == 0) t->value = it;  

    else if (diff < 0)  

    {     t->left = insertAtRoot(t->left, it);  

          t = rotateR(t);  

     }   

     else if (diff > 0) {  

          t->right = insertAtRoot(t->right, it);  

          t = rotateL(t);  

     }  

return t;  

} 

 

 


