SEARCHING AND TREES

o COMP1927 Computing 17x1
o Sedgewick Chapters 5, 12



SEARCHING (CONT)

Searching 1s a very important/frequent operation.
Several approaches have been developed:

- O(n) ... inear scan (search technique of last
resort)

- O(logn) ... binary search, search trees (trees
also have other uses)

- O(1) ... hash tables (only O(1)under optimal
conditions)



SEARCHING (CONT)

Linear structures: arrays, linked lists
Arrays = random access.
Lists = sequential access.

Array List
O(n) O(n)
Unsorted (linear scan) (linear scan)
O(log n) O(n)
Sorted (binary search) (linear scan)




SEARCHING

o Storing and searching sorted data:
o Dilemma: Inserting into a sorted sequence

e Finding the 1nsertion point on an array —
O(log n) but then we have to move
everything along to create room for the new
1tem

 Finding 1insertion point on a linked list O(n)
but then we can add the 1item 1n constant
time.

o Can we get the best of both worlds?



TREE TERMINOLOGY

Trees are branched data structures

o consisting of nodes (vertices) and links (edges),
with no cycles

o each node contains a data value (or key + data)

o each node has links to < k other nodes (k=2
below)

iﬂternal_ | Internal
node ™~ node

——— l-__.-'
R o
—— -

-

T |eaf-



TREES

o Trees can be viewed as a set of nested structures:
each node has % possibly empty subtrees

Left subtree Right subtree



USES OF TREES

o Trees are used 1n many contexts, e.g.
representing hierarchical data structures (e.g.
expressions)

o efficient searching (e.g. sets, symbol tables, ...)

Search Tree Expression Tree



TREE TERMINOLGY

o Level of a node 1n a tree (or depth) 1s one higher than
the level of its parent

e Depth of the root 1s 0

o We call the length of the longest path from the root to
a node the height of a tree

8 | evel 1

root —

| evel 2



SPECIAL PROPERTIES OF SOME TREES

o M-ary tree: each internal node has exactly
M children

o Ordered tree: order of the children at every
node 1s specified through constraints on the
data/keys 1n the nodes

o Balanced tree: a tree with properties that

e #inodes 1n left subtree = #nodes 1n right
subtree

e this property applies over all nodes 1n the
tree



BINARY TREES

For much of this course, we focus on binary
lrees

A binary tree (simplest type of M-ary tree) 1s
defined recursively, as being either:

e empty (contains no nodes)
e consisting of a node, with two sub-trees
each node contains a value

the left and right sub-trees are binary
Lrees



BINARY TREES: PROPERTIES

o A binary tree with n
nodes has a height of

e at most

n-1 (if degenerate) (
an unbalanced tree,
where for each parent

node, there 1s only one
child node )

e at least

floor(logz(n)) (if
balanced)

level 0 —=
level 1 —=

level 4 —=



BINARY SEARCH TREE (BST)

o A BST 1s an ordered binary tree that has:
e all values in left sub-tree being less than root
e all values in right sub-tree are greater than root
e this property applies over all nodes in the tree

e cach node 1s the root of 0, 1 or 2 sub-trees

Three binary search trees



BINARY TREES

Shape of tree 1s determined by the order of
Insertion

Balanced Tree Non-balanced Tree




BINARY SEARCH TREES

Depth of tree = max path length from root to leaf

rool

Level O

L evel 1

Level 2
leaf

Depth of tree with n nodes: min = floor(log.n), max = n-1
Height balanced tree: V nodes, depth(left subtree) =

depth(right subtree)
Time complexity of tree algorithms is typically O(depth)




EXERCISE: INSERTION INTO BSTS

o For each of the sequences below start from an
initially empty binary search tree

e show the tree resulting from inserting the
values 1n the order given

e What is the height of each tree?
o(a) 4 2 6 51 7 3
ob) 5 3 6 2 4 7 1
o(c) 1 2 3 4 5 6 7



TREES: TRAVERSAL

o For trees, several well-defined visiting orders exist:

e Depth first traversals

preorder (NLR) ... visit root, then left subtree,
then right subtree

inorder (LNR) ... visit left subtree, then root,
then right subtree

postorder (LRN) ... visit left subtree, then right
subtree, then root

e Breadth-first traversal or level-order ... visit root,
then all 1ts children, then all their children



EXAMPLE OF TRAVERSALS ON A BINARY
TREE

o Pre-Order: 4213869

o In-Order: 1234689

0 Post-Order 1326984
o Level-Order: 4281369

Left subtree Right subtree



REPRESENTING BSTS

A binary search tree is a generalization of a linked list:
e nodes are a structure with two links to nodes

e empty trees are NULL links

typedef struct treenode *Treelink;

struct treenode {
Int data;
Treelink left, right;

}



REPRSENTING BSTS

Abstract data vs concrete data




BINARY SEARCH TREES

Operations on BSTs:
o traverse(TreeLink, (*visit)) ... traverse tree

e insert(T'reelink, Item) ... add new 1tem to tree via
key

e delete(Treelink, Item) ... remove item with specified
key from tree

e search(TreelLink,Item) ... find item containing key in
tree

e height(TreeLink) ... compute depth of tree
e nodes(TreeLink) ... count #nodes 1n tree

e plus, "bookeeping" ... new(), dispose(), show(),

empty(), ...
Notes: keys are unique (not technically necessary)



BINARY SEARCH TREES

Traversal (with parameterised visit option)
vold traverse(TreeLink t, void (*visit)(Item)) {

1f (t == null) return;

(*visit)(t); // NLR traversal
traverse(t->left, visit);

// put "visit data" here for LNR
traverse(t->right, visit);

// put "visit data" here for LRN



SEARCHING IN BSTS

o Recursive version

// Returns non-zero if item is found,
// zero otherwise
int search (Treel.ink n, Item 1) {

int result;

1f(n == NULL) {
result = 0;
telse 1f (1 < n->data) {
result = search(n->left,1);
lelse 1f (i > n->data)
result = search(n->right,i);
lelse{ // you found the item
result = 1;

J

return result;
}

* Exercise: Try writing an iterative version



INSERTION INTO A BST

o Cases for inserting value V into tree T:
e T 1s empty, make new node with V as root of new tree
e root node contains V, tree unchanged (no dups)
e V <value 1n root, insert into left subtree (recursive)

e V >value in root, insert into right subtree (recursive)

o Non-recursive insertion of V into tree T:
e search to location where V belongs, keeping parent
e make new node and attach to parent
e whether to attach L or R depends on last move



INSERTION INTO A BST

//Returns the root of the tree
//[Inserts duplicates on theleft hand side of tree
Treelink insertRec (Treelink tree, Treeltem 1tem) {
1f(tree == NULL){
Treelink newNode = createNode(item);
return newNode; //now the root of the tree
} else {
1f(item <= tree->item)}{
tree->left = insertRec(tree->left, item); //

} else {
tree->right = insertRec(tree->right, item);

j

return tree;



DELETION FROM BSTS

o Insertion 1nto a binary search tree 1s easy:

e find location 1n tree where node to be added
e create node and link to parent

o Deletion from a binary search tree 1s
harder:
e find the node to be deleted and i1ts parent
e unlink node from parent and delete
e replace node 1n tree by ... ???



DELETION FROM BSTS...

o Easy option ... don't delete; just mark node as

deleted

e future

searches simply 1gnore marked nodes

o If we want to delete, three cases to consider ...

e zero subtrees ... unlink node from parent

e Oone su|

otree ... replace node by child

e two su
parent

otrees ... two children; one link 1n



DELETION FROM BSTS

o Case 1: value to be deleted 1s a leaf (zero
subtrees)

delete k ... °



DELETION FROM BSTS

o Case 1: value to be deleted 1s a leaf (zero
subtrees)

deleted k ...




DELETION FROM BSTS

o Case 2: value to be deleted has one subtree

delete p ... o



DELETION FROM BSTS

o Case 2: value to be deleted has one subtree

deleted p ... o



DELETION FROM BSTS

o Case 3a: value to be deleted has two subtrees

o Replace deleted node by 1ts immediate successor
e The smallest (leftmost) node in the right subtree

delete m ...



DELETION FROM BSTS

o Case : value to be deleted has two subtrees

deleted m (v2) ...




BINARY SEARCH TREE PROPERTIES

o Cost for searching/deleting:

e Worst case: key 1s not in BST — search the height
of the tree

o Balanced trees — O(log,n)
oDegenerate trees — O(n)
o Cost for insertion:
e Always traverse the height of the tree
oBalanced trees — O(log,n)
o Degenerate trees — O(n)



NEW BINARY SEARCH TREE

#define
key(it) ((1t).key)

#define cmp(k1,k2) (k1) - (k2))
#define 1t(k1,k2) (cmp(kl,k2) < 0)
#define eq(k1l,k2) (cmp((kl,k2) == 0)
#define gt(k1,k2) (cmp(kl,k2) > 0)

Tree newTree();

Tree insert(Tree, Item);
Tree delete(Tree, Key);
int find(Tree, Key);



INSERTION USING NEW TREE ADT

// more standard tree operations
void dropTree(Tree);

vold showTree(Tree);

int depth(Tree);

int nnodes(Tree); // aka size()

// functions internal to ADT

Link rotateR(Link);

Link rotateL(Link);

Tree insertAtRoot(Tree, Item);

Tree imnsertRandom(Tree, Item);



INSERT AT ROOT - ROTATE OPERATIONS




INSERT AT ROOT - ROTATE OPERATIONS

rotate right

¢ N ¢ N
n2 n1
P./ \-i t; t1 P N
tl tE v tZ t!.
rotate Left

Link rotateR(Link n1) {
1f (n1 == NULL) return NULL;
Link n2 = n1->left;
1f (M2 == NULL) return nl;
nl->left = n2->right;
n2->right = nl;
return n2;

Left rotation is similar with n1/n2 and left/right switched



INSERTION AT ROOT

o Previous description of BSTs inserted at
leaves.

o Different approach: insert new value at root.
o Method for inserting at root (recursive):
o base case:

e tree 1s empty; make new node and make 1t
root

O recursive case:
e insert new node as root of /R subtree
e ]ift new node to root by R/L rotation



INSERTION AT ROOT

l: :'. insert 4 rotate Ieft

/ﬂtate left

o © e o @Jo




INSERTION AT ROOT (CONT)

Tree insertAtRoot(Tree t, Item 1t) {
1f (t == NULL) return newNode(item);
int diff = cmp(key(it), key(t->value));
if (diff == 0) t->value = 1t;
else 1f (diff < 0)
{ t->left = insertAtRoot(t->left, it);
t = rotateR(t);
h
else 1f (diff > 0) {
t->right = insertAtRoot(t->right, 1t);
= rotateLi(t);
h

return t;

j



