

SEARCHING AND TREES

COMP1927 Computing 17x1

Sedgewick Chapters 5, 12

SEARCHING (CONT)

Searching is a very important/frequent operation.

Several approaches have been developed:

- O(n) ... linear scan (search technique of last

resort)

- O(logn) ... binary search, search trees (trees

also have other uses)

- O(1) ... hash tables (only O(1) under optimal

conditions)

SEARCHING (CONT)

Linear structures: arrays, linked lists

Arrays = random access.

Lists = sequential access.

Array List

Unsorted
O(n)

(linear scan)

O(n)

(linear scan)

Sorted
O(log n)

(binary search)

O(n)

(linear scan)

SEARCHING

 Storing and searching sorted data:

 Dilemma: Inserting into a sorted sequence

 Finding the insertion point on an array –

O(log n) but then we have to move

everything along to create room for the new

item

 Finding insertion point on a linked list O(n)

but then we can add the item in constant

time.

 Can we get the best of both worlds?

TREE TERMINOLOGY

Trees are branched data structures

 consisting of nodes (vertices) and links (edges),

with no cycles

 each node contains a data value (or key + data)

 each node has links to ≤ k other nodes (k=2

below)

TREES

 Trees can be viewed as a set of nested structures:

each node has k possibly empty subtrees

USES OF TREES

 Trees are used in many contexts, e.g.

representing hierarchical data structures (e.g.

expressions)

 efficient searching (e.g. sets, symbol tables, ...)

TREE TERMINOLGY

 Level of a node in a tree (or depth) is one higher than

the level of its parent

 Depth of the root is 0

 We call the length of the longest path from the root to

a node the height of a tree

8

SPECIAL PROPERTIES OF SOME TREES

M-ary tree: each internal node has exactly

M children

Ordered tree: order of the children at every

node is specified through constraints on the

data/keys in the nodes

Balanced tree: a tree with properties that

 #nodes in left subtree = #nodes in right

subtree

 this property applies over all nodes in the

tree

BINARY TREES

For much of this course, we focus on binary

trees

A binary tree (simplest type of M-ary tree) is

defined recursively, as being either:

 empty (contains no nodes)

 consisting of a node, with two sub-trees

- each node contains a value

- the left and right sub-trees are binary

trees

BINARY TREES: PROPERTIES

 A binary tree with n
nodes has a height of

 at most

n-1 (if degenerate) (

an unbalanced tree,

where for each parent

node, there is only one

child node)

 at least

 floor(log2(n)) (if

balanced)

BINARY SEARCH TREE (BST)

 A BST is an ordered binary tree that has:

 all values in left sub-tree being less than root

 all values in right sub-tree are greater than root

 this property applies over all nodes in the tree

 each node is the root of 0, 1 or 2 sub-trees

BINARY TREES

Shape of tree is determined by the order of

insertion

BINARY SEARCH TREES

Depth of tree = max path length from root to leaf

Depth of tree with n nodes: min = floor(log2n), max = n-1

Height balanced tree: ∀ nodes, depth(left subtree) ≅

 depth(right subtree)

Time complexity of tree algorithms is typically O(depth)

EXERCISE: INSERTION INTO BSTS

 For each of the sequences below start from an

initially empty binary search tree

 show the tree resulting from inserting the

values in the order given

 What is the height of each tree?

 (a) 4 2 6 5 1 7 3

 (b) 5 3 6 2 4 7 1

 (c) 1 2 3 4 5 6 7

TREES: TRAVERSAL

 For trees, several well-defined visiting orders exist:

 Depth first traversals

preorder (NLR) ... visit root, then left subtree,

then right subtree

inorder (LNR) ... visit left subtree, then root,

then right subtree

postorder (LRN) ... visit left subtree, then right

subtree, then root

 Breadth-first traversal or level-order ... visit root,

then all its children, then all their children

EXAMPLE OF TRAVERSALS ON A BINARY

TREE

 Pre-Order: 4 2 1 3 8 6 9

 In-Order: 1 2 3 4 6 8 9

 Post-Order 1 3 2 6 9 8 4

 Level-Order: 4 2 8 1 3 6 9

REPRESENTING BSTS

A binary search tree is a generalization of a linked list:

 nodes are a structure with two links to nodes

 empty trees are NULL links

typedef struct treenode *Treelink;

struct treenode {

 int data;

 Treelink left, right;

}

REPRSENTING BSTS

Abstract data vs concrete data

BINARY SEARCH TREES

Operations on BSTs:

 traverse(TreeLink, (*visit)) … traverse tree

 insert(TreeLink, Item) ... add new item to tree via

key

 delete(TreeLink, Item) ... remove item with specified

key from tree

 search(TreeLink,Item) ... find item containing key in

tree

 height(TreeLink) … compute depth of tree

 nodes(TreeLink) … count #nodes in tree

 plus, "bookeeping" ... new(), dispose(), show(),

empty(), ...

Notes: keys are unique (not technically necessary)

BINARY SEARCH TREES

Traversal (with parameterised visit option)

void traverse(TreeLink t, void (*visit)(Item)) {

 if (t == null) return;

 (*visit)(t); // NLR traversal

 traverse(t->left, visit);

 // put "visit data" here for LNR

 traverse(t->right, visit);

 // put "visit data" here for LRN

 }

SEARCHING IN BSTS

 Recursive version

// Returns non-zero if item is found,

// zero otherwise

int search(TreeLink n, Item i){

 int result;

 if(n == NULL){

 result = 0;

 }else if(i < n->data){

 result = search(n->left,i);

 }else if(i > n->data)

 result = search(n->right,i);

 }else{ // you found the item

 result = 1;

 }

 return result;

}

* Exercise: Try writing an iterative version

INSERTION INTO A BST

 Cases for inserting value V into tree T:

 T is empty, make new node with V as root of new tree

 root node contains V, tree unchanged (no dups)

 V < value in root, insert into left subtree (recursive)

 V > value in root, insert into right subtree (recursive)

 Non-recursive insertion of V into tree T:

 search to location where V belongs, keeping parent

 make new node and attach to parent

 whether to attach L or R depends on last move

INSERTION INTO A BST

//Returns the root of the tree

//Inserts duplicates on theleft hand side of tree

Treelink insertRec (Treelink tree, TreeItem item) {

 if(tree == NULL){

 Treelink newNode = createNode(item);

 return newNode; //now the root of the tree

 } else {

 if(item <= tree->item){

 tree->left = insertRec(tree->left, item); //

 } else {

 tree->right = insertRec(tree->right, item);

 }

 }

 return tree;

}

DELETION FROM BSTS

 Insertion into a binary search tree is easy:

 find location in tree where node to be added

 create node and link to parent

Deletion from a binary search tree is

harder:

 find the node to be deleted and its parent

 unlink node from parent and delete

 replace node in tree by ... ???

DELETION FROM BSTS…

 Easy option ... don't delete; just mark node as

deleted

 future searches simply ignore marked nodes

 If we want to delete, three cases to consider ...

 zero subtrees ... unlink node from parent

 one subtree ... replace node by child

 two subtrees ... two children; one link in

parent

DELETION FROM BSTS

 Case 1: value to be deleted is a leaf (zero

subtrees)

DELETION FROM BSTS

 Case 1: value to be deleted is a leaf (zero

subtrees)

DELETION FROM BSTS

 Case 2: value to be deleted has one subtree

DELETION FROM BSTS

 Case 2: value to be deleted has one subtree

DELETION FROM BSTS

 Case 3a: value to be deleted has two subtrees

 Replace deleted node by its immediate successor

 The smallest (leftmost) node in the right subtree

DELETION FROM BSTS

 Case : value to be deleted has two subtrees

BINARY SEARCH TREE PROPERTIES

 Cost for searching/deleting:

 Worst case: key is not in BST – search the height

of the tree

Balanced trees – O(log2n)

Degenerate trees – O(n)

 Cost for insertion:

 Always traverse the height of the tree

Balanced trees – O(log2n)

Degenerate trees – O(n)

NEW BINARY SEARCH TREE

// Item, Key, Node, Link, Tree types as before #define

key(it) ((it).key)

// operations on keys

#define cmp(k1,k2) ((k1) - (k2))

#define lt(k1,k2) (cmp(k1,k2) < 0)

#define eq(k1,k2) (cmp(k1,k2) == 0)

#define gt(k1,k2) (cmp(k1,k2) > 0)

// standard tree operations

Tree newTree();

Tree insert(Tree, Item);

Tree delete(Tree, Key);

int find(Tree, Key);

INSERTION USING NEW TREE ADT

// more standard tree operations

void dropTree(Tree);

void showTree(Tree);

int depth(Tree);

int nnodes(Tree); // aka size()

// functions internal to ADT

Link rotateR(Link);

Link rotateL(Link);

Tree insertAtRoot(Tree, Item);

Tree insertRandom(Tree, Item);

INSERT AT ROOT - ROTATE OPERATIONS

INSERT AT ROOT - ROTATE OPERATIONS

Link rotateR(Link n1) {

 if (n1 == NULL) return NULL;

 Link n2 = n1->left;

 if (n2 == NULL) return n1;

 n1->left = n2->right;

 n2->right = n1;

 return n2;

 }

Left rotation is similar with n1/n2 and left/right switched

INSERTION AT ROOT

 Previous description of BSTs inserted at

leaves.

 Different approach: insert new value at root.

 Method for inserting at root (recursive):

 base case:

 tree is empty; make new node and make it

root

 recursive case:

 insert new node as root of L/R subtree

 lift new node to root by R/L rotation

INSERTION AT ROOT

INSERTION AT ROOT (CONT)

Tree insertAtRoot(Tree t, Item it) {

 if (t == NULL) return newNode(item);

 int diff = cmp(key(it), key(t->value));

 if (diff == 0) t->value = it;

 else if (diff < 0)

 { t->left = insertAtRoot(t->left, it);

 t = rotateR(t);

 }

 else if (diff > 0) {

 t->right = insertAtRoot(t->right, it);

 t = rotateL(t);

 }

return t;

}

