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SEARCHING (CONT) 

Searching is a very important/frequent operation. 

Several approaches have been developed: 

- O(n) ... linear scan   (search technique of last 

resort) 

- O(logn) ... binary search,  search trees   (trees 

also have other uses) 

- O(1) ... hash tables   (only O(1) under optimal 

conditions) 

 



SEARCHING (CONT) 

Linear structures: arrays, linked lists 

Arrays = random access.    

Lists = sequential access. 

 

Array List 

Unsorted 
O(n) 

(linear scan) 

O(n) 

(linear scan) 

Sorted 
O(log  n) 

(binary search) 

O(n) 

(linear scan) 



SEARCHING 

 Storing and searching sorted data: 

 Dilemma: Inserting into a sorted sequence 

 Finding the insertion point on an array – 

O(log n) but then we have to move 

everything along to create room for the new 

item 

 Finding insertion point on a linked list O(n) 

but then we can add the item in constant 

time. 

 Can  we get the best of both worlds? 

 



TREE TERMINOLOGY 

Trees are branched data structures  

 consisting of nodes (vertices) and links (edges), 

with no cycles  

 each node contains a data value (or key + data)  

 each node has links to ≤ k other nodes   (k=2 

below)  

 



TREES 

 Trees can be viewed as a set of nested structures: 

each node has k possibly empty subtrees  

 



USES OF TREES 

 Trees are used in many contexts, e.g. 

representing hierarchical data structures (e.g. 

expressions)  

 efficient searching (e.g. sets, symbol tables, ...)  

 



TREE TERMINOLGY 

 Level of a node in a tree (or depth) is one higher than 

the level of its parent  

 Depth of the root is 0 

 We call the length of the  longest path from the root to 

a node the height of a tree 
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SPECIAL PROPERTIES OF SOME TREES 

M-ary tree: each internal node has exactly 

M children 

Ordered tree: order of the children at every 

node is specified through constraints on the 

data/keys in the nodes 

Balanced tree: a tree with properties that 

 #nodes in left subtree = #nodes in right 

subtree 

 this property applies over all nodes in the 

tree 



BINARY TREES 

For much of this course, we focus on binary 

trees  

A binary tree (simplest type of M-ary tree) is 

defined recursively, as being either: 

 empty   (contains no nodes)  

 consisting of a node, with two sub-trees  

- each node contains a value  

- the left and right sub-trees are binary 

trees  

 



BINARY TREES: PROPERTIES 

 A binary tree with n 
nodes has a height of 

  at most  

n-1 (if degenerate)  ( 

an unbalanced tree, 

where for each parent 

node, there is only one 

child node ) 

  at least  

 floor(log2(n)) (if 

balanced) 



BINARY SEARCH TREE (BST) 

 A BST is an ordered binary tree that has: 

 all values in left sub-tree being less than root 

 all values in right sub-tree are greater than root 

 this property applies over all nodes in the tree 

 each node is the root of 0, 1 or 2 sub-trees 



BINARY TREES 

Shape of tree is determined by the order of 

insertion 

 



BINARY SEARCH TREES 

Depth of tree = max path length from root to leaf 

 

 

 

 

 

 

 

Depth of tree with n nodes:   min = floor(log2n),   max = n-1 

Height balanced tree:  ∀ nodes, depth(left subtree) ≅   

                                                    depth(right subtree) 

Time complexity of tree algorithms is typically O(depth) 

 

 



EXERCISE: INSERTION INTO BSTS 

 

 For each of the sequences below start from an 

initially empty binary search tree  

 show the tree resulting from inserting the 

values in the order given  

 What is the height of each tree? 

 (a)   4   2   6   5   1   7   3  

 (b)   5   3   6   2   4   7   1  

 (c)   1   2   3   4   5   6   7  

 



TREES: TRAVERSAL 

 For trees, several well-defined visiting orders exist:  

 Depth first traversals 

preorder (NLR) ... visit root, then left subtree, 

then right subtree  

inorder (LNR) ... visit left subtree, then root, 

then right subtree  

postorder (LRN) ... visit left subtree, then right 

subtree, then root  

 Breadth-first traversal or level-order ... visit root, 

then all its children, then all their children  

 



EXAMPLE OF TRAVERSALS ON A BINARY 

TREE 

 Pre-Order: 4 2 1 3 8 6 9 

 In-Order: 1 2 3 4 6 8 9 

 Post-Order 1 3 2 6 9 8 4 

 Level-Order: 4 2 8 1 3 6 9 



REPRESENTING BSTS  

A binary search tree is a generalization of a linked list: 

 nodes are a structure with two links to nodes 

 empty trees are NULL links 

typedef struct treenode *Treelink; 

 

struct treenode { 

   int data; 

   Treelink left, right; 

} 
   



REPRSENTING BSTS 

Abstract data vs concrete data 



BINARY SEARCH TREES 

Operations on BSTs: 

 traverse(TreeLink, (*visit)) … traverse tree  

 insert(TreeLink, Item) ... add new item to tree via 

key 

 delete(TreeLink, Item) ... remove item with specified 

key from tree 

 search(TreeLink,Item) ... find item containing key in 

tree 

 height(TreeLink) … compute depth of tree 

 nodes(TreeLink) … count #nodes in tree 

 plus, "bookeeping" ... new(), dispose(), show(), 

empty(), ... 

Notes: keys are unique   (not technically necessary) 

 

 



BINARY SEARCH TREES 

Traversal (with parameterised visit option) 

void traverse(TreeLink t, void (*visit)(Item)) { 

  

    if (t == null) return;  

    (*visit)(t);   // NLR traversal 

     traverse(t->left, visit);  

     // put "visit data" here for LNR  

     traverse(t->right, visit);  

     // put "visit data" here for LRN  

    } 



SEARCHING IN BSTS 

 Recursive version 

  
// Returns non-zero if item is found, 

// zero otherwise 

int search(TreeLink  n, Item i){ 

    int result; 

    if(n == NULL){ 

      result =  0; 

    }else if(i < n->data){ 

      result = search(n->left,i); 

    }else if(i > n->data) 

      result = search(n->right,i); 

    }else{ // you found the item  

      result = 1; 

    } 

    return result; 

}  

* Exercise: Try writing an iterative version 



INSERTION INTO A BST 

 Cases for inserting value V into tree T:  

 T is empty, make new node with V as root of new tree  

 root node contains V, tree unchanged (no dups)  

 V < value in root, insert into left subtree (recursive)  

 V > value in root, insert into right subtree (recursive)  

 Non-recursive insertion of V into tree T:  

 search to location where V belongs, keeping parent  

 make new node and attach to parent  

 whether to attach L or R depends on last move  

 



INSERTION INTO A BST 

//Returns the root of the tree 

//Inserts duplicates on theleft hand side of tree 

Treelink insertRec (Treelink tree, TreeItem item) { 

    if(tree == NULL){ 

        Treelink newNode = createNode(item); 

        return newNode; //now the root of the tree 

    } else { 

        if(item <= tree->item){ 

            tree->left = insertRec(tree->left, item); // 

        } else { 

            tree->right = insertRec(tree->right, item); 

        } 

    } 

    return tree; 

} 

  

 



DELETION FROM BSTS 

 Insertion into a binary search tree is easy: 

  find location in tree where node to be added  

 create node and link to parent  

Deletion from a binary search tree is 

harder:  

 find the node to be deleted and its parent  

 unlink node from parent and delete  

 replace node in tree by ... ???  

 



DELETION FROM BSTS… 

 Easy option ... don't delete; just mark node as 

deleted  

 future searches simply ignore marked nodes  

 If we want to delete, three cases to consider ... 

  zero subtrees ... unlink node from parent  

 one subtree ... replace node by child  

 two subtrees ... two children; one link in 

parent  

 



DELETION FROM BSTS 

 Case 1: value to be deleted is a leaf (zero 

subtrees)  



DELETION FROM BSTS 

 Case 1: value to be deleted is a leaf (zero 

subtrees)  



DELETION FROM BSTS 

 Case 2: value to be deleted has one subtree  

 



DELETION FROM BSTS 

 Case 2: value to be deleted has one subtree  

 



DELETION FROM BSTS 

 Case 3a: value to be deleted has two subtrees  

 Replace deleted node by its immediate successor 

 The smallest (leftmost) node in the right subtree  



DELETION FROM BSTS 

 Case : value to be deleted has two subtrees  



BINARY SEARCH TREE PROPERTIES 

 

 Cost for searching/deleting: 

 Worst case: key is not in BST – search the height 

of the tree 

Balanced trees – O(log2n) 

Degenerate trees – O(n) 

 Cost for insertion: 

 Always traverse the height of the tree 

Balanced trees – O(log2n) 

Degenerate trees – O(n) 

 

 



NEW BINARY SEARCH TREE 

// Item, Key, Node, Link, Tree types as before #define 

key(it) ((it).key)  

// operations on keys  

#define cmp(k1,k2) ((k1) - (k2)) 

#define lt(k1,k2) (cmp(k1,k2) < 0)  

#define eq(k1,k2) (cmp(k1,k2) == 0)  

#define gt(k1,k2) (cmp(k1,k2) > 0)  

// standard tree operations  

Tree newTree(); 

Tree insert(Tree, Item);  

Tree delete(Tree, Key);  

int find(Tree, Key);  



INSERTION USING NEW TREE ADT 

// more standard tree operations  

void dropTree(Tree);  

void showTree(Tree);  

int depth(Tree);  

int nnodes(Tree); // aka size() 

// functions internal to ADT 

Link rotateR(Link);  

Link rotateL(Link);  

Tree insertAtRoot(Tree, Item);  

Tree insertRandom(Tree, Item); 



INSERT AT ROOT - ROTATE OPERATIONS 



INSERT AT ROOT - ROTATE OPERATIONS 

Link rotateR(Link n1) {  

    if (n1 == NULL) return NULL;  

    Link n2 = n1->left;  

    if (n2 == NULL) return n1;  

    n1->left = n2->right;  

    n2->right = n1;  

    return n2; 

 }  

Left rotation is similar with n1/n2 and left/right switched 



INSERTION AT ROOT 

 Previous description of BSTs inserted at 

leaves. 

 Different approach: insert new value at root. 

 Method for inserting at root (recursive): 

 base case: 

 tree is empty; make new node and make it 

root 

 recursive case: 

 insert new node as root of L/R subtree 

 lift new node to root by R/L rotation 

 



INSERTION AT ROOT 



INSERTION AT ROOT (CONT) 

Tree insertAtRoot(Tree t, Item it) {  

    if (t == NULL) return newNode(item);  

    int diff = cmp(key(it), key(t->value));  

    if (diff == 0) t->value = it;  

    else if (diff < 0)  

    {     t->left = insertAtRoot(t->left, it);  

          t = rotateR(t);  

     }   

     else if (diff > 0) {  

          t->right = insertAtRoot(t->right, it);  

          t = rotateL(t);  

     }  

return t;  

} 

 

 


