

SEARCHING AND TREES

COMP1927 Computing 17x1

Sedgewick Chapters 5, 12

SEARCHING (CONT)

Searching is a very important/frequent operation.

Several approaches have been developed:

- O(n) ... linear scan (search technique of last

resort)

- O(logn) ... binary search, search trees (trees

also have other uses)

- O(1) ... hash tables (only O(1) under optimal

conditions)

SEARCHING (CONT)

Linear structures: arrays, linked lists

Arrays = random access.

Lists = sequential access.

Array List

Unsorted
O(n)

(linear scan)

O(n)

(linear scan)

Sorted
O(log n)

(binary search)

O(n)

(linear scan)

SEARCHING

 Storing and searching sorted data:

 Dilemma: Inserting into a sorted sequence

 Finding the insertion point on an array –

O(log n) but then we have to move

everything along to create room for the new

item

 Finding insertion point on a linked list O(n)

but then we can add the item in constant

time.

 Can we get the best of both worlds?

TREE TERMINOLOGY

Trees are branched data structures

 consisting of nodes (vertices) and links (edges),

with no cycles

 each node contains a data value (or key + data)

 each node has links to ≤ k other nodes (k=2

below)

TREES

 Trees can be viewed as a set of nested structures:

each node has k possibly empty subtrees

USES OF TREES

 Trees are used in many contexts, e.g.

representing hierarchical data structures (e.g.

expressions)

 efficient searching (e.g. sets, symbol tables, ...)

TREE TERMINOLGY

 Level of a node in a tree (or depth) is one higher than

the level of its parent

 Depth of the root is 0

 We call the length of the longest path from the root to

a node the height of a tree

8

SPECIAL PROPERTIES OF SOME TREES

M-ary tree: each internal node has exactly

M children

Ordered tree: order of the children at every

node is specified through constraints on the

data/keys in the nodes

Balanced tree: a tree with properties that

 #nodes in left subtree = #nodes in right

subtree

 this property applies over all nodes in the

tree

BINARY TREES

For much of this course, we focus on binary

trees

A binary tree (simplest type of M-ary tree) is

defined recursively, as being either:

 empty (contains no nodes)

 consisting of a node, with two sub-trees

- each node contains a value

- the left and right sub-trees are binary

trees

BINARY TREES: PROPERTIES

 A binary tree with n
nodes has a height of

 at most

n-1 (if degenerate) (

an unbalanced tree,

where for each parent

node, there is only one

child node)

 at least

 floor(log2(n)) (if

balanced)

BINARY SEARCH TREE (BST)

 A BST is an ordered binary tree that has:

 all values in left sub-tree being less than root

 all values in right sub-tree are greater than root

 this property applies over all nodes in the tree

 each node is the root of 0, 1 or 2 sub-trees

BINARY TREES

Shape of tree is determined by the order of

insertion

BINARY SEARCH TREES

Depth of tree = max path length from root to leaf

Depth of tree with n nodes: min = floor(log2n), max = n-1

Height balanced tree: ∀ nodes, depth(left subtree) ≅

 depth(right subtree)

Time complexity of tree algorithms is typically O(depth)

EXERCISE: INSERTION INTO BSTS

 For each of the sequences below start from an

initially empty binary search tree

 show the tree resulting from inserting the

values in the order given

 What is the height of each tree?

 (a) 4 2 6 5 1 7 3

 (b) 5 3 6 2 4 7 1

 (c) 1 2 3 4 5 6 7

TREES: TRAVERSAL

 For trees, several well-defined visiting orders exist:

 Depth first traversals

preorder (NLR) ... visit root, then left subtree,

then right subtree

inorder (LNR) ... visit left subtree, then root,

then right subtree

postorder (LRN) ... visit left subtree, then right

subtree, then root

 Breadth-first traversal or level-order ... visit root,

then all its children, then all their children

EXAMPLE OF TRAVERSALS ON A BINARY

TREE

 Pre-Order: 4 2 1 3 8 6 9

 In-Order: 1 2 3 4 6 8 9

 Post-Order 1 3 2 6 9 8 4

 Level-Order: 4 2 8 1 3 6 9

REPRESENTING BSTS

A binary search tree is a generalization of a linked list:

 nodes are a structure with two links to nodes

 empty trees are NULL links

typedef struct treenode *Treelink;

struct treenode {

 int data;

 Treelink left, right;

}

REPRSENTING BSTS

Abstract data vs concrete data

BINARY SEARCH TREES

Operations on BSTs:

 traverse(TreeLink, (*visit)) … traverse tree

 insert(TreeLink, Item) ... add new item to tree via

key

 delete(TreeLink, Item) ... remove item with specified

key from tree

 search(TreeLink,Item) ... find item containing key in

tree

 height(TreeLink) … compute depth of tree

 nodes(TreeLink) … count #nodes in tree

 plus, "bookeeping" ... new(), dispose(), show(),

empty(), ...

Notes: keys are unique (not technically necessary)

BINARY SEARCH TREES

Traversal (with parameterised visit option)

void traverse(TreeLink t, void (*visit)(Item)) {

 if (t == null) return;

 (*visit)(t); // NLR traversal

 traverse(t->left, visit);

 // put "visit data" here for LNR

 traverse(t->right, visit);

 // put "visit data" here for LRN

 }

SEARCHING IN BSTS

 Recursive version

// Returns non-zero if item is found,

// zero otherwise

int search(TreeLink n, Item i){

 int result;

 if(n == NULL){

 result = 0;

 }else if(i < n->data){

 result = search(n->left,i);

 }else if(i > n->data)

 result = search(n->right,i);

 }else{ // you found the item

 result = 1;

 }

 return result;

}

* Exercise: Try writing an iterative version

INSERTION INTO A BST

 Cases for inserting value V into tree T:

 T is empty, make new node with V as root of new tree

 root node contains V, tree unchanged (no dups)

 V < value in root, insert into left subtree (recursive)

 V > value in root, insert into right subtree (recursive)

 Non-recursive insertion of V into tree T:

 search to location where V belongs, keeping parent

 make new node and attach to parent

 whether to attach L or R depends on last move

INSERTION INTO A BST

//Returns the root of the tree

//Inserts duplicates on theleft hand side of tree

Treelink insertRec (Treelink tree, TreeItem item) {

 if(tree == NULL){

 Treelink newNode = createNode(item);

 return newNode; //now the root of the tree

 } else {

 if(item <= tree->item){

 tree->left = insertRec(tree->left, item); //

 } else {

 tree->right = insertRec(tree->right, item);

 }

 }

 return tree;

}

DELETION FROM BSTS

 Insertion into a binary search tree is easy:

 find location in tree where node to be added

 create node and link to parent

Deletion from a binary search tree is

harder:

 find the node to be deleted and its parent

 unlink node from parent and delete

 replace node in tree by ... ???

DELETION FROM BSTS…

 Easy option ... don't delete; just mark node as

deleted

 future searches simply ignore marked nodes

 If we want to delete, three cases to consider ...

 zero subtrees ... unlink node from parent

 one subtree ... replace node by child

 two subtrees ... two children; one link in

parent

DELETION FROM BSTS

 Case 1: value to be deleted is a leaf (zero

subtrees)

DELETION FROM BSTS

 Case 1: value to be deleted is a leaf (zero

subtrees)

DELETION FROM BSTS

 Case 2: value to be deleted has one subtree

DELETION FROM BSTS

 Case 2: value to be deleted has one subtree

DELETION FROM BSTS

 Case 3a: value to be deleted has two subtrees

 Replace deleted node by its immediate successor

 The smallest (leftmost) node in the right subtree

DELETION FROM BSTS

 Case : value to be deleted has two subtrees

BINARY SEARCH TREE PROPERTIES

 Cost for searching/deleting:

 Worst case: key is not in BST – search the height

of the tree

Balanced trees – O(log2n)

Degenerate trees – O(n)

 Cost for insertion:

 Always traverse the height of the tree

Balanced trees – O(log2n)

Degenerate trees – O(n)

NEW BINARY SEARCH TREE

// Item, Key, Node, Link, Tree types as before #define

key(it) ((it).key)

// operations on keys

#define cmp(k1,k2) ((k1) - (k2))

#define lt(k1,k2) (cmp(k1,k2) < 0)

#define eq(k1,k2) (cmp(k1,k2) == 0)

#define gt(k1,k2) (cmp(k1,k2) > 0)

// standard tree operations

Tree newTree();

Tree insert(Tree, Item);

Tree delete(Tree, Key);

int find(Tree, Key);

INSERTION USING NEW TREE ADT

// more standard tree operations

void dropTree(Tree);

void showTree(Tree);

int depth(Tree);

int nnodes(Tree); // aka size()

// functions internal to ADT

Link rotateR(Link);

Link rotateL(Link);

Tree insertAtRoot(Tree, Item);

Tree insertRandom(Tree, Item);

INSERT AT ROOT - ROTATE OPERATIONS

INSERT AT ROOT - ROTATE OPERATIONS

Link rotateR(Link n1) {

 if (n1 == NULL) return NULL;

 Link n2 = n1->left;

 if (n2 == NULL) return n1;

 n1->left = n2->right;

 n2->right = n1;

 return n2;

 }

Left rotation is similar with n1/n2 and left/right switched

INSERTION AT ROOT

 Previous description of BSTs inserted at

leaves.

 Different approach: insert new value at root.

 Method for inserting at root (recursive):

 base case:

 tree is empty; make new node and make it

root

 recursive case:

 insert new node as root of L/R subtree

 lift new node to root by R/L rotation

INSERTION AT ROOT

INSERTION AT ROOT (CONT)

Tree insertAtRoot(Tree t, Item it) {

 if (t == NULL) return newNode(item);

 int diff = cmp(key(it), key(t->value));

 if (diff == 0) t->value = it;

 else if (diff < 0)

 { t->left = insertAtRoot(t->left, it);

 t = rotateR(t);

 }

 else if (diff > 0) {

 t->right = insertAtRoot(t->right, it);

 t = rotateL(t);

 }

return t;

}

