BALANCED TREES

o COMP1927 Computing 17x1
o Sedgewick Chapters 13

2-3-4 TREES

2-3-4 trees allow three kinds of nodes

 2-nodes, one value and two children (same as normal BSTs)
 3-nodes, two values and three children

* 4-nodes, three values and four children

J | 2-node

C N I T]J’—Hﬂdf'

A lefeln) (k] ol

2-node d-node J-node 2-node I-node

2-3-4 TREES

2-3-4 trees are ordered similar to BST's

x| a8n
AAN AAAD

- generalise node to allow multiple keys; keep tree balanced
- each node contains 7 <n < 3 Items and n+1 subtrees
- new leaves 1nserted at leaves; in a balanced 2-3-4 tree, all
leaves are at same distance from root
2-3-4 trees grow “upwards” from the leaves via split-promote

2-3-4 TREES

2-3-4 trees 1implementation

typedef struct node Node;

struct
typedef struct node *Tree, ode | OFder
struct node {

Int order:; /[l 2, 30r4 data

Item data|3]; // items in node child| *

Tree child[4]; // links to subtrees

I
Make a new 2-3-4 node (always order 2):

Node *newNode (ltem It) {
Node *new = malloc(sizeof(Node));
assert(new = NULL); new->order = 2;
new->data[0] = It;
new->child[0] = new->child[1] = NULL,;
return new,

2-3-4 TREES

Searching 1in 2-3-4 trees:
compare search key against keys in node
find 1nterval containing search key
follow associated line (recursively)

Item *search(Tree t, Key k) {
If (t == NULL) return NULL,
Int I; int diff; int nitems = t->order-1;
// find relevant slot in items
for (i = 0; I < nitems; i++) {
diff = cmp(k, key(t->datali]));
if (diff <= 0) break;
}
If (diff ==0) {
/[match; return result;
return &(t-> datali]);
else {
// keep looking in relevant subtree
return search(t-> child[i], k);

%

2-3-4 TREES (CONT...)

2-3-4 tree searching cost analysis

* as for other trees, worst case determined by depth d
o 2-3-4 trees are always balanced => depth 1s O log (N)
* worst case for depth: all nodes are 2-nodes

same case as for balanced BSTs, 1.e. d = log,N
* best case for depth: all nodes are 4-nodes

balanced tree with branching factor 4, 1.e. d = log,N

BUILDING A 2-3-4 TREE ... 7 INSERTIONS

- To 1nsert, first search for a leaf node 1n which to put the key
- May need to split a node e.g, insert C

 when 1inserting a key 1nto a 4-node, the 4-node splits and a
key moves up to the parent node.

 new key may 1n turn cause the parent to split, moving a
key up to the grandparent, and so on up to the root.

(M) (;:)
CAYMYT) AYCYH
./..% (ﬂm @m D
(A) (H(J) (T AXB) (HXJ (AXB) (H(1)J) (T
(cx XM)
AB) E1D BR™ ./ @é K RD

BUILDING A 2-3-4 TREE ... 7 INSERTIONS

- To 1nsert, first search for a leaf node 1n which to put the key
- May need to split a node e.g, insert C

 when 1inserting a key 1nto a 4-node, the 4-node splits and a
key moves up to the parent node.

 new key may 1n turn cause the parent to split, moving a
key up to the grandparent, and so on up to the root.

(M) (;:)
CAYMYT) AYCYH
./..% (ﬂm @m D
(A) (H(J) (T AXB) (HXJ (AXB) (H(1)J) (T
(cx XM)
AB) E1D BR™ ./ @é K RD

INSERTION INTO A 2-3-4 TREE

- Show what happens when D, S, F, U are inserted into this tree

AlB| [H| [J][K] R[T

INSERTION INTO A 2-3-4 TREE

- More examples of 2-3-4 1nsertions:

CIM|R

\

A|B HIJ[K|] [N |S|[T]|U M

insert L /

MORE EXAMPLES OF 2-3-4 INSERTIONS

- Insertion into a 2-node:

= insert(K) F

- Insertion into a 3-node:

F |y insert(H) FlJ

"/

MORE EXAMPLES OF 2-3-4 INSERTIONS

- Insertion into a 4-node — requires a split

F insert(£)

(AN

with split

- Splitting the root

insert(N)

J

R

a

\AAA

2 splits

M

Ao]) (km]P) 7] o)) k] v LT

2-3-4 INSERT

Insertion Algorithm

Insert(Tree, ltem) {
Node = search(Tree, key(ltem)
Parent = parent of Node
If (order(Node) < 4)
Insert Item in Node, order++
else {
promote = Node.data[1] // middle value
NodeL = new Node containing data[0]
NodeR = new Node containing data[2]
if (key(ltem) < key(data[1]))
Insert Item in NodeL
else
Insert Item in NodeR
Insert promote into Parent
while (order(Parent) == 4)
continue promote/split upwards
If (IsRoot(Parent) && order(Parent) == 4)
split root, making new root

2-3-4 INSERT

Following a chain of splits up to root
- starting from 1nsertion into a leaf 4-node
- 1s not necessarily the best approach to insertion
Alternative approach:
- split 4-nodes attached to 2- or 3-nodes while we
descend tree to leaf node to 1nsert
- guaranteed that split of leaf propagates up only 1
level

2-3-4 INSERT
Top-Down Splitting strategy (part 1):

Linsert 12

[111 \’
H/E 16 b

[3] [BI [10) (17) 7

Top-Down Splitting strategy (part 2):

2-3-4 INSERT
Top-Down Splitting strategy (part 3):

] \

/l\ ,/\,,

LinSert 12

r’f Fomd b 4

Top-Down Sphttmg Strategy (part 4)

/ \
afla i/ b haf Yy N

Lnsert 12

2-3-4 TREE PERFORMANCE

Insertion (into tree of depth d) = O(d) comparisons
* multiple comparisons in each of d 2-3-4 nodes
* along with occasional splitting to shift values
between nodes

Search (in tree of depth d) = O(d) comparisons
 multiple comparisons in each of d 2-3-4 nodes

Depth of 2-3-4 tree with [N nodes = log,N <d < log,N

Note that all paths in a 2-3-4 tree have same length d

2-3-4 TREE VARIATIONS

Variation #1: why stop at 4?7 why not 2-3-4-5 trees? or M-
way trees?
* allow nodes to hold up to M-1 1items, and at least M/2
* 1f each node 1s a disk-page, then we have a B-

tree (databases)
» for B-trees, depending on Item size, M > 100/200/400

Variation #2: Variation #2: don't have "variable-sized" nodes
» use standard BST nodes, augmented with one extra
piece of data

* Implement similar strategy as 2-3-4 trees — red-black
trees.

RED-BLACK TREES

Red-Black trees are a representation of 2-3-4 trees using

BST nodes
A red-black tree 1s defined as:

a BST 1n which each node 1s marked red or black
no two red nodes appear consecutively on any path
a red node corresponds to a 2-3-4 sibling of its

parent
a black node corresponds to a 2-3-4 child of i1ts

parent

Insertion algorithm:

avolds worst case O(n) behaviour

Search algorithm:

standard BST search

RED-BLACK TREES

Representing 4-nodes 1n red-black trees:

2-3-4 nodes red-black nodes (i) red-black nodes (ii)
/% 3 I 6 1105\ 6
a /3&)r\ d

Note: some texts colour the links rather than the nodes

RED-BLACK TREES

Equivalent trees (one 2-3-4, one red black):

RED-BLACK TREES

Red-black tree implementation:

typedef enum {RED,BLACK} Colr;
typedef struct Node *Link;
typedef struct Node *Tree;
typedef struct Node {

Item data;

Colr colour;

Link left;

Link right;
+ Node;

RED = node Is part of the same 2-3-4 node as its parent (sibling)
BLACK = node Is a child of the 2-3-4 node containing the parent

RED-BLACK TREES

Making new nodes requires a colour:

Node *newNode(Item 1t, Colr c) {
Node *new = malloc(sizeof(Node));
assert(new != NULL);
new->data = 1t;
new->colour = c;
new->left = new->right = NULL;
return new;

RED = node Is part of the same 2-3-4 node as its parent (sibling)
BLACK = node Is a child of the 2-3-4 node containing the parent

RED-BLACK TREES

Searching method 1s standard BST search:

Item *search(Tree t, Key k) {

1f (t == NULL) return NULL;
int diff = ecmp(k, key(t->data));
1f (diff < 0)

return search(t->left, k);
else 1f (diff > 0)

return search(t->right, k);
else i/ matches

return &(t->data);

RED-BLACK TREE INSERTION

Insertion 1s more complex than for standard BSTs
* need to recall direction of last branch (L or R)
* need to recall whether parent link 1s red or black
* splitting/promoting 1implemented by rotateL/rotateR
* several cases to consider depending on colour/direction
combinations

We first consider some of the components of this algorithm.

#define L(t) (t)->left

#define R(t) (t)->right

#define red(t) ((t) = NULL && (t)->colour == RED)
#define blk(t) ((t) '= NULL && (t)->colour == BLACK)

RED-BLACK TREES

Insertion function top-level:

vold 1nsertRedBlack(Tree t, Item 1t)
d
t->root = insertRB(t->root, 1t, 0);
t->root->colour = BLACK;
h
Link insertRB(Link t, Item 1t, 1nt inRight)
d
1f (t == NULL) return newNode(it,RED);
if (red(Li(t)) && red(R(t))) {
// split 4-node and promote middle value
// performed as we descend tree
h
// recursive insert cases (cf. regular bst)
// then re-arrange links/colours after insert
return t';

j

RED-BLACK TREES

Splitting a 4-node, 1in a red-black tree:

Code:

1f (red(L(t)) && red(R(t)) {
t->colour = RED;
t->left->colour = BLACK;
t->right->colour = BLACK;

j

RED-BLACK TREES

Recursive Insert part (cf. bst insert):

Code:
1f (less(key(it), key(t->1tem))) {
t->left = insertRB(t->left, 1t, 0);

h
else { key(it) larger than key 1n root

t->right = insertRB(t->right, 1t, 1);

RED-BLACK TREES

Check after insert: two successive red links = newly-created 4-
node

2-3-4

[ree T Eu 4-node

View

H-B
Iree
View

Code:
1f (red(Li(t)) && red(L(L(t)))) {
= rotateR(t);
t->colour = BLACK;
t-right->colour = RED;
h

RED-BLACK TREES

Check after insert: "normalise" direction of successive red
links

L [} _"--I f o= i
bl L
- 'I-\.
- '|I'I'.:__|I'I :‘u_.._:l'l'|'| -
H_B Ld dd da ¥l sl X T 0
lree t o u t - E
2 ') T m _I:l
View E rolaters

Code:

1f (red(t) && red(L(t)) && 1nRight) {
t = rotateR(t);

h

RED-BLACK TREES

Full code for handling insertion into left subtree ..

Code:
1f (less(key(it), key(t->1tem))) {
L(t) = insertRB(L(t), 1t, 0);
1f (red(t) && red(Li(t)) && 1nRight)
t = rotateR(t);
1f (red(LL(t)) && red(L(L(t)))
t = rotateR(t);
t->colour = BLACK;
R(t)->colour = RED;

j
j

Similar "mirror-image" code if inserted into right subtree

RED-BLACK TREES

Exercise 1: 2-3-4 vs Red-Black Insertion
Show the 2-3-4 tree resulting from the 1nsertion of:

1059624201518191/7 1213 14

Compare this to the red-black tree with the same
values.

Use this Algorithm Visualiser to build the red-black
tree

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

RED-BLACK TREES

Add red-black trees to Treel.ab

 Modify Node to include colour
 Implement insertRedBlack() and insert RB()

Compare against the Algorithm Visualiser to build the
red-black tree

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

RED-BLACK TREES

- Cost analysis for red-black trees:

* tree 1s well-balanced; worst case search 1s O(log2N)

* 1nsertion affects nodes down one path; max rotations
1s 2d (where d 1s the depth of the tree)

- Only disadvantage 1s complexity of insertion/deletion
code.

- Note: red-black trees were popularised by Sedgewick.

