Divide and Conquer Sorting Algorithms and Non-
comparison-based Sorting Algorithms

COMP1927 17x1

Sedgewick Chapters 7 and 8
Sedgewick Chapter 6.10, Chapter 10

DIVIDE AND CONQUER SORTING
ALGORITHMS

* Step 1

If a collection has less than two elements, 1t’s already
sorted

Otherwise, split it into two parts
* Step 2

Sort both parts separately
* Step 3

Combine the sorted collections to return the final
result

MERGE SORT

Basic 1idea: Divide and Conquer
split the array into two equal-sized partitions
(recursively) sort each of the partitions
merge the two sorted partitions together

Merging: Basic 1dea
copy elements from the inputs one at a time
olve preference to the smaller of the two
when one exhausted, copy the rest of the other

PHASES OF MERGE SORT

unsorted unsorted

GEI"iESED G’E rg:s@

sorted sorted

Y

sorted

DIVIDE AND CONQUER SORTING:
MERGESORT

Split the sequence 1n halves
Sort both halves independently
What 1s the best way to combine them?

look at the first element in each sequence, pick the smallest of both,
Insert i sorted collection, continue until all elements are used up

e N~ (1) split
| (2)call sort rec.

~ e (3)merge

MERGE SORT: ARRAY IMPLEMENTATION

assuming we have merge iImplemented, mergesort can be
defined as:

volid merge (int al[], int lo, 1int mid, 1nt
hi);

vold mergesort (Item al[], i1nt lo, int hi) {

int mid = (lo+hi)/2; // midpoint
if (hi <= 1lo) {
return,;

J

mergesort (a, lo, mid);
mergesort (a, mid+1l, hi);
merge (a, lo, mid, hi);

MERGING PROCESS

o The merging process:

Before

i]

in X vz
k
out <xd&<y empty
After (if y < x)
i J
in X y z
k

out <xd& <y v empty

MERGE IMPLEMENTATION

// sorted(a[0..mid]), sorted(a[mid+1l..N-17)
int a[N]; // input array
int b[N]; // output array

mid = N/2;
1 = 0;
7 = mid+1l;

k = 0; while (i <= mid && § <= N-1) {

1) blk++] = a[i++]
1) blk++] = a[j++]

while (1 <= mid

)
bl[k++] = a[i++]

while (j <= N-1)
blk++] = al[]++]

MERGESORT: WORK COMPLEXITY

Running time on an array of size n accrues as follows:
1. First, we spend time O(1) for computing m.

2. Then, we make two recursive calls to merge sort,
with arrays of sizes [(n — 1)/2] and [(n — 1)/2]

3. Finally, call merge. Merge goes through the two
sub-arrays with one loop, always increasing one of
1 and j. Thus, 1t takes time (n).

T(n) =T(|(n — 1/2]) + T([(n — 1)/2]) + (n),
T(1)=(1), TO)= (1) (Base case)

log,(n) layers

. Tota.
. Tota.

MERGESORT: WORK COMPLEXITY

n Total: ©(n)
¥ ¥
n/2 n/2 Total: 2-0(n/2) =06(n)
n/4 n/4 n/4 n/4 Total: 4-0(n/4) =0(n)

Total: 2% - Q(n/2%) = O(n)

1]|1 e o o 1| Total: n-©(1) =06(n)

- work done at each level = n

. number of levels = log.n levels (halving at each

level, starting at n and finishing at 1)

- Total work over all levels = n log,n

- Disadvantage over quicksort: need extra storage O(n)

MERGE SORT WORK COMPLEXITY

o Overall:
Merge sort 1s in O(nlogn),

Stable — as long as merge 1implemented to be
stable

Not 1n-place: Uses O(n) memory for merge and
O(log.n) stack space

Non-adaptive : still nlogn for ordered data

BoTTOM UP MERGE SORT

Basic Idea: Non-recursive
On each pass, array contains sorted sections of length m
At start treat as n sorted sections of length 1

1st pass merges adjacent elements into sections of
length 2

2nd pass merges adjacent elements into sections of
length 4

continue until a single sorted section of length n

This approach 1s used for sorting diskfiles

BOoTTOM-UP MERGE SORT ARRAY
IMPLEMENTATION

#define min(A,B) (A<B ? A : B)
int merge (int al[], int 1, 1nt m, int r);

volid mergesortBU (int al[], int 1, 1nt r) {
int 1, m, end;

for (m = 1; m <= r-1; m = 2*m) {
for (1 = 1; 1 <= r-m; 1 += 2*m) {
end = min(i + 2*m - 1, 1)) ;

merge (a, 1, i+m-1, end);
}
}

MERGE SORT: IMPLEMENTATION

Straight forward to implement on lists
Traverses 1ts input in sequential order
Do not need extra space for merging lists
Works for top-down and bottom up versions

DIVIDE AND CONQUER SORTING:
(QUICKSORT

Mergesort uses a trivial split operation and puts all the work
1In combining the result

Can we split the collection in a more intelligent way, such
that combining the results 1s trivial?

make sure all elements in one part are less than all the elements
1n the second part

_~ ~— (1) split

| | (2) call sort rec.

(3)combine

MORE ON QUICK SORT: IMPLEMENTATION

On arrays, we need 1n-place partitioning:

we need to swap elements 1n the array, such that for
some pivot we choose, and some 1ndex 1, all

oJ<i, al[j] £ ali], and
ok>1, al[k] 2 a[i]

< ali] > ai]

QUICK SORT

Given such a partition function, the implementation of
quick sort on arrays 1s easy:

However, it’s surprisingly tricky to get partition right for
all cases

int partition(int al[], int 1, 1nt r);

volid quicksort (int al[], int 1, 1nt r) {

int 1;
1f (r <= 1) {
return;
}
1 = partition (a, 1, r);

quicksort (a, 1, i-1);
quicksort (a, i+1l, r);

(QUICK SORT: PARTITIONING

int partition (int al[], int 1, 1nt r) {
int 1 = 1-1;

int] = r;
int pivot = alr]; //rightmost is pivot
for (;7) A
while (a[++1] < pivot) ;
while (pivot < af[-—-3] && 7 !'= 1);
1f (1 >= J) A
break;

}
swap (1, 3,a);
}
//put pivot into place
swap (1,r a);
return i; //Index of the pivot

QUICKSORT: WORK COMPLEXITY

o How many steps?

N steps to split array in two

Combing the sorted sub-results in constant time

Best case (both parts have the same size):

o T(N)=N+2*T(N/2) O *logN)

Worst case (one part contains all elements):

o T(N) =N + T(N-1)

o =N + N-1 + T(N-2)

o =N+ N-1+N-2+...+1=N(N+1)/2

o = O(N?)

(QUICK-SORT PROPERTIES

It 1s not adaptive: existing order 1n the sequence
only makes 1t worse

It 1s not stable in our 1implementation. Can be
made stable.

In-place: Partitioning done 1n place
Recursive calls use stack space of
O(N) in worst case
O(log N) on average

(QUICK SORT - PERFORMANCE PROBLEMS

Taking the first or last element as pivot is often a bad
choice

sequence might be partially sorted already
oAlready ordered data 1s a worst case scenario
oReverse ordered data 1s a worst case scenario
split into parts of size N-1 and o

Ideally our pivot would be
oThe median value

In the worst case our pivot 1s

othe largest or smallest value

(QUICK SORT CHOOSING BETTER A PIVOT

o We can reduce the probability of picking a bad pivot
picking a random element as the pivot e.g.,
- int randNum = rand() % (r-1+1);

- swap elements at (left+randNum) with right-most
element before calling partition

picking the best out of three (or more)

Median of Three partitioning

- Compare left-most, middle and right-most element

- Pick the median of these 3 values to be the pivot

Does not eliminate the worst case but makes i1t less

likely

Ordered data no longer a worst case scenario

(QUICK SORT MEDIAN OF THREE
PARTITIONING- CHOOSING A BETTER PIVOT

el N

t I I 1

I (I+1)/2 -1 r
pick al[ll,a[r], a[(r+1)/2]
swap a[r-1] and a[(r+1)/2]

sort al[l], a[r-1],a[r] such that a[l]J<=a[r-1] <= a]r]
- 1f a[l] > a[r-1]) then swap a[r-1] and al[l]
-1f a[r-1] > a[r]) then swap a[r-1] and a[r]
- 1f a[l] > a[r-1]) then swap a[r-1]) a[l]

call partition on a[l+1] to a|r-1]

QUICK SORT: PERFORMANCE AND
OPTIMISATION

Optimized versions of quick sort are frequently used

For small sequences, quick sort 1s relatively expensive
because of the recursive calls

Quick sort with sub-file cutoff

Handle small partitions less than a certain threshold
length differently

Switch to insertion sort for the small partitions

Don’t sort. Leave and do insertion sort at the end
Use median of five or more elements

Handling duplicates more efficiently by using three way
partitioning.

(QUICKSORT ON LINKED LISTS

Straight forward to do if we just use first or last
element as the pivot

Picking the pivot via randomisation or median of 3 is
now O(n) instead of O(1).

QUICK SORT VS MERGE SORT

On typical modern architectures, efficient
quicksort implementations generally outperform
mergesort for sorting RAM-based arrays.

Quick Sort is also a cache friendly sorting algorithm
as 1t has good locality of reference when used for
arrays.

On the other hand, merge sort 1s a stable sort,
parallelizes better, and 1s more efficient at
handling slow-to-access sequential media. Merge
sort 1s often the best choice for sorting a linked
list and the merging can be done without using
extra space that i1s used during merge for arrays.

http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Locality_of_reference
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list

HOW FAST CAN A SORT BECOME?

All the sorts we have seen so far have been
comparison based sorts

find order by comparing elements in the sequence

can sort any type of data as long as there 1s a way to
compare 2 1items

Theoretical lower bound on worst case running time
of comparison based sorts

O(nlog(n)).

Algorithms such as quicksort and mergesort are really
about as fast as we can go for unknown types of data.

SORTING HAS A THEORETICAL NLOGN
LOWER BOUND

If there 1s 3 items, then 3! = 6 possible
permutations or 6 possible different inputs

If there are n 1tems, then n! possible permutations or
Inputs

If we do 1 comparison we can divide into 2
different categories

If we do k comparisons we can divide into 2k different
categories

We need to do enough comparisons so

n log n <=k (using stirling’s approximation)

NON-COMPARISON BASED SORTING

Non-comparison based sorting

We may not actually have to compare pairs of elements
to sort the data.

Specialised sorts can be implemented if additional
information about the data to be sorted 1s known.

Take advantage of special properties of keys

We can do some kinds of sorts 1n linear time!

KEY INDEXED COUNTING SORT

Basic Idea:

Using an array, count up number of times each key
appears

Use this information as an index of where the 1item
belongs in the final sorted array

Place 1items 1n the final sorted array based on their index

For example: Sorting numbers from 0..10

If I knew there were three 0’s and two 1’s
If I had a 2, it would go at index 5
If I got another 2, it would go at index 6.

KEY INDEXED COUNTING SORT

May work 1in O(n) time. How?
Because 1t uses N0 comparisons!

But we have to make assumptions about the size and
nature of the data

Assumptions
Sequence of size N
Each key 1s in the range of 0 - M-1

Time Complexity
Efficient if M 1s not too large compared to N
O(n+ M) - Not good 1n cases like : 1,2,999999

In-place? No. Uses temporary arrays of O(n+M)
Is stable

RADIX SORTING

Comparison based sorting:
Sorting based on comparing two whole keys

Radix sorting:
Processing keys one piece at a time

Keys are treated as numbers represented in base-
R (radix) number system

Binary numbers R 1s 2

Decimal numbers R 1s 10

Ascii strings R 1s 128 or 256

Unicode strings R 1s 65,536

Sorting 1s done individually on each digit in the
key on at a time — digit by digit or character by
character

RADIX SORT LiSD (LEAST SIGNIFICANT
DIGIT FIRST)

Consider characters or digits or bits from Right
to Left (1e from least significant)

Stably sort using dth digit as the key
Can use Key Indexed Counting sort.
For example: sorting 1019, 2301, 3129, 2122

1019, 2301, 3129, 2122 -> 2301, 2122, 1019, 3129
2301, 2122, 1019, 3129 -> 2301, 1019, 2122, 3129
2301, 1019, 2122, 3129 -> 1019, 2122, 3129, 2301
1019, 2122, 3129, 2301 -> 1019, 2122, 2301,3129

RADIX SORT LSD PROPERTIES

O(w(n+R))

w 1s the width of the data 1e 987 1s 3 digits wide,

“aaa’ 1s 3 characters, integers (binary rep) could have
w as 32 and R of 2

The algorithm makes w passes over all n keys.
Not 1n place: extra space: O(n + R)
Stable
Can modify to use for variable length data
Imagine sorting strings like

“zaaaaaaa’ and “aaaaaaaa’

Can spend lots of work comparing insignificant
details

RADIX SORT MSD (MOST SIGNIFICANT
DIGIT FIRST)

Partition file into R pieces according to first
character

Can use key-indexed counting

Recursively sort all strings that start with each
character

key-indexed counts delineate files to sort
O(w(n+R)) — 1n worst case
Extra space N + DR (D 1s depth of recursion)

Don't have to go through all of the digits to get a
sorted array. This can make MSD radix sort
considerably faster

Can use 1nsertion sort for small subfiles

