
Conditional Execution

• many problems require executing statements only in some
circumstances
e.g read two integers and print largest one

• sometimes called control flow, branching or conditiional
execution

• The C if Statement can do this.

The if Statement

if (expression) {

statement1;

statement2;

....

}

• statement1, statement2, ... are executed
if expression is non-zero.

• statement1, statement2, ... are NOT executed
if expression is zero.

• There is no “boolean” type in C.
0 is regarded as “FALSE”
anything non-zero is regarded as “TRUE”

The else keyword

if (expression) {

statement1;

statement2;

....

} else {

statement3;

statement4;

....

}

• statement1, statement2, ... are executed
if expression is non-zero.

• statement3, statement4, ... are executed
if expression is zero.

The if Statement

Multiple if statements can be chained together:

int a, b;

printf("Please enter two numbers, a and b: ");

scanf("%d %d", &a, &b);

if (a > b) {

printf("a is greater than b\n");

} else if (a < b) {

printf("a is less than b\n");

} else {

printf("a is equal to b\n");

}

Relational Operators

C has the usual operators to compare numbers:

> greater than
>= greater than or equal to
< less than
<= less than or equal to
!= not equal to
== equal to

• Be careful comparing doubles for equality using == or !=

• Remember doubles are approximations.

Relational Operators

• Many languages have a separate type for true & false.

• C just uses numbers.

• C convention is zero is false, other numbers true.

• relational operators return:
the int 0 for false
the int 1 for true

• For example:
5 > 4 7→ 1

5 >= 4 7→ 1

5 < 4 7→ 0

5 <= 4 7→ 0

5 != 4 7→ 1

5 == 4 7→ 0

Logical Operators

• C has logical operators: && || !

• Logical operators allow us to combine comparisons, eg:
mark > 0 && mark < 100

• logical operators return:
the int 0 for false
the int 1 for true

• && is the and operator - true if both operands are true
2 > 0 && 2 < 10 7→ 1 && 1 7→ 1

• || is the or operator - true if either operand is true
24 > 42 || 2 < 10 7→ 0 || 1 7→ 1

• ! is the not operator - true iff its operands is false
!(24 > 42) 7→ !0 7→ 1

Logical Operators - Conditional evaluation

• The C operator && || have a useful property.

• They always evaluate their left-hand side first.

• They only evaluate their right-hand side if needed.

• && will not evaluate right-hand side if left-hand side is false
(zero).

• || will not evaluate right-hand side if left-hand side is true
(non-zero).

• For example we can write

x != 0 && y/x > 2

without risking division by zero.

Unary Negation operator

The unary negation operator converts a non-zero operand into 0
and 0 into 1. For example,

if (!(height <= 130 && width <= 240)) {

printf("Envelope too large!\n");

}

.. is the same as ..

if (height > 130 || width > 240) {

printf("Envelope too large!\n");

}

