
typedef

We can use the keyword typedef to give a name to a type:

typedef double real;

This means variables can be declared as numeric but they will
actually be of type double.
Do not overuse typedef - it can make programs harder to read, e.g.:

typedef int andrew;

andrew main(void) {

andrew i,j;

....

Using typedef to make programs portable

Suppose have a program that does floating-point calculations.
If we use a typedef’ed name for all variable, e.g.:

typedef double real;

real matrix[1000][1000][1000];

real my_atanh(real x) {

real u = (1.0 - x)/(1.0 + x);

return -0.5 * log(u);

}

If we move to a platform with little RAM, we can save memory
(and lose precision) by changing the typedef:

typedef float real;

structs

• We have seen simple types e.g. int, char, double

I variables of these types hold single values

• We have seen a compound type: arrays
I array variables hold multiple values
I arrays are homogenous - every array element is the same type
I array element selected using integer index
I array size can be determined at runtime

• Another compound type: structs

I structs hold multiple values (fields)
I struct are heterogeneous - fields can be differenttype
I struct field selected using name
I struct fields fixed

structs - example

If we define a struct that holds COMP1511 student details:

#define MAX_NAME 64

#define N_LABS 10

struct student {

int zid;

char name[64];

double lab_marks[N_LABS]

double assignment1_mark;

double assignment2_mark;

}

We can declare an arry to hold the details of all students:

struct student comp1511_students[900];

combining structs and typedef

Common to use typedef to give name to a struct type.

struct student {

int zid;

char name[64];

double lab_marks[N_LABS]

double assignment1_mark;

double assignment2_mark;

}

typedef struct student student_t;

student_details_t comp1511_students[900];

Programmer often use convention to separate type names
e.g. t suffix.

Assigning structs

Unlike arrays, it is possible to copy all components of a structure in
a single assignment:

struct student_details student1, student2;

...

student2 = student1;

It is not possible to compare all components with a single
comparison:

if (student1 == student2) // NOT allowed!

If you want to compare two structures, you need to write a
function to compare them component-by-component and decide
whether they are “the same”.

structs and functions

A structure can be passed as a parameter to a function:

void print_student(student_t student) {

printf("%s z%d\n", d.name, d.zid);

}

Unlike arrays, a copy will be made of the entire structure, and only
this copy will be passed to the function.
Unlike arrays, a function can return a struct:

student_t read_student_from_file(char filename[]) {

....

}

Pointers to structs

If a function needs to modify a structs field or if we want to avoid
the inefficiency of copying the entire struct, we can instead pass a
pointer to the struct as a parameter:

int scan_zid(student *s) {

return scanf("%d", &((*s).zid));

}

The “arrow” operator is more readable :

int scan_zid(student *s) {

return scanf("%d", &(s->zid));

}

If s is a pointer to a struct s->field is equivalent to (*s).field

Nested Structures

One structure can be nested inside another

typedef struct date Date;

typedef struct time Time;

typedef struct speeding Speeding;

struct date {

int day, month, year;

};

struct time {

int hour, minute;

};

struct speeding {

Date date;

Time time;

double speed;

char plate[MAX_PLATE];

};

