
Consequences of bugs:

• compiler gives syntax/semantic error - if you’re very lucky

• program halts with run-time error - if you’re lucky

• program never halts - if you’re lucky-ish

• program halts, but with incorrect results - if you’re unlucky

• program appears correct, but has security holes - if you’re
unlucky

Invalid C Program - changed variable

int a[10];

int b[10];

printf("a[0] is at address %p\n",&a[0]);

printf("a[9] is at address %p\n", &a[9]);

printf("b[0] is at address %p\n",&b[0]);

printf("b[9] is at address %p\n", &b[9]);

for (int i = 0; i < 10; i++) {

a[i] = 77;

}

for (int i = 0; i <= 12; i++) {

b[i] = 42;

}

for (int i = 0; i < 10; i++) {

printf("%d ", a[i]);

}

printf("\n");

Invalid C Program - changed variable

The C program assigns to b[10] .. b[12] which don’t exist
The consequence could be anything - a C implementation is
permitted to behave in any manner given an invalid program.
On gcc 6.3 on Linux/x86 64 it happens to change b[0] to 42:

$ gcc invalid_array_index0.c

$ a.out

a[0] is at address 0x7fffc9cbcbf0

a[9] is at address 0x7fffc9cbcc14

b[0] is at address 0x7fffc9cbcbc0

b[9] is at address 0x7fffc9cbcbe4

42 77 77 77 77 77 77 77 77 77

Invalid C Programs - changed termination

int i;

int a[10];

printf("i is at address %p\n", &i);

printf("a[0] is at address %p\n", &a[0]);

printf("a[9] is at address %p\n", &a[9]);

printf("a[11] would be stored at address %p\n", &a[10]);

for (i = 0; i <= 11; i++) {

a[i] = 0;

}

Invalid C Programs - changed termination

Another invalid C program assigning to a non-existent array
element.
On gcc 6.3 on Linux/x86 64 it happens to assigns to i and the
loop doesn’t terminate.
So a one character error makes the program invalid, and seemingly
certain termination does not occur.

$ gcc invalid1.c

$ a.out

i is at address 0x7fffbb72bfdc

a[0] is at address 0x7fffbb72bfb0

a[9] is at address 0x7fffbb72bfd4

a[10] is equivalent to address 0x7fffbb72bfd8

....

Invalid C Program - changed variable in another
function

int main(void) {

int answer = 36;

f(5);

printf("answer=%d\n", answer); // prints 42

return 0;

}

void f(int x) {

int a[10];

// a[19] doesn’t exist

// with gcc 6.3 on Linux/x86_64 variable answer

// in main happens to be where a[19] would be

a[19] = 42;

}

Invalid C Program - changed variable in another
function

Yet another invalid C program assigning to a non-existent array
element.
On gcc 6.3 on Linux/x86 64 it changes the variable answer in the
calling function main.

$ gcc invalid2.c

$ a.out

answer=42

Invalid C Program - changed function return
location

void f() {

int a[10];

// on gcc-6.3/Linux x86

// change function’s return address on stack

// causing function to return after the line

// where answer is assigned 24

a[14] += 7;

}

int main(void) {

int answer = 42;

f();

answer = 24;

printf("answer=%d\n", answer);

return 0;

}

Invalid C Program - changed function return
location

Yet another invalid C program assigning to a non-existent array
element.
With gcc 6.3 on Linux/x86 64 it changes where the function
returns in main.

$ gcc invalid3.c

$ a.out

answer=42

Invalid C Program - bypassing authentication

int authenticated = 0;

char password[8];

printf("Enter your password: ");

gets(password);

if (strcmp(password, "secret") == 0) {

authenticated = 1;

}

// a password longer than 8 characters will overflow

// array password on gcc 6.3 on Linux/x86_64 this can

// overwrite the variable authenticated and allow access

if (authenticated) {

printf("Welcome. You are authorized.\n");

} else {

printf("Welcome. You are unauthorized. ");

printf("Your death will now be implemented.\n");

printf("Welcome. You will experience ");

printf("a tingling sensation and then death. \n");

printf("Remain calm while your life is extracted.\n");

}

Invalid C Program - bypassing authentication

Yet another invalid C program assigning to a non-existent array
element.
A password longer than 8 characters will overflow the array
password This is often turmed buffer-overflow.

$ gcc invalid4,c

$ a.out

Enter your password: secret

Welcome. You are authorized.

$ a.out

Enter your password: wrong

Welcome. You are unauthorized.

Your death will now be implemented.

Welcome. You will experience a

tingling sensation and then death.

Remain calm while your life is extracted.

$ a.out

Enter your password: longcorrectpassword

Welcome. You are authorized.

Implementation versus Language

C was designed for much smaller slower computers - 28K of RAM ,
1mhz clock.
Program speed/size much more important for programs then
dominated language choice.
Most C implementations still focus on maximizing performance of
valid programs.
Most C implementations do not check array bounds or for
arithmetic overflow because this has performance costs.
The C definition does not entail this.
A C implementation an check array bounds and halt if an invalid
indexes is used.
A C implementation could check & halt if an uninititialized value is
used - but difficult/expensive to track for arrays.

Address Sanitizer extension to gcc/clang

gcc -fsanitize=address gives a very different Cimplementation.
Invalid array indices, pointer dereferences and some other invalid
use of the string library function are detected.
Performance cost - execution from 1.2-10+x slower.
Information cryptic but note source code line indicated, e.g.:

$ cd /home/cs1511/public_html/lec/illegal_C/code/

$ gcc -g -fsanitize=address debug_examples.c

$./a.out 3

ASAN:DEADLYSIGNAL

==========================

==16917==ERROR: AddressSanitizer: SEGV on unknown address

0x000000000014 (pc 0x55819087cd2c bp 0x7ffd02a40bb0

#0 0x55819087cd2b in test3 debug_examples.c:33

#1 0x55819087d19c in main debug_examples.c:96

#2 0x7fccf078d2b0 in __libc_start_main (/lib/...

#3 0x55819087caf9 in _start ...

....

Address Sanitizer extension to gcc/clang

dcc uses -fsanitize=address (with clang) but makes message more
comprehensible for beginner programmers:

$ cd /home/cs1511/public_html/lec/illegal_C/code/

$ dcc debug_examples.c

$./a.out 3

ASAN:DEADLYSIGNAL

debug_examples.c:33 runtime error - illegal array, pointer

or other operation

Execution stopped in test3() in debug_examples.c line 33:

int *a = NULL;

// dereferencing NULL pointer

--> a[5] = 42;

}

Values when execution stopped:

a = NULL

....

Address Sanitizer extension to gcc/clang

Address Sanitizer does not detect use of uninitialized values, e.g.:

% ./debug_examples 4

0

1

2

3

-2115323248

5

6

7

8

9

valgrind - another debugging/testing tool

Valgrind works on x86 machine code - not C specific.
Valgrind runs the code on a virtual machine and detects use of
uninitialized memory.
Also picks up many invalid array indexes and pointer dereferences:
Large performance penalty - and slow start time.

valgrind - another debugging/testing tool

% valgrind ./debug_examples 4

==1932== Memcheck, a memory error detector

==1932== Copyright (C) 2002-2010, and GNU GPL’d, ...

==1932== Using Valgrind-3.6.1 and LibVEX; rerun ...

==1932== Command: ./debug_examples 4

==1932==

0

1

2

3

==1932== Use of uninitialised value of size 8

==1932== at 0x521AF0B: _itoa_word (_itoa.c:195)

==1932== by 0x521D3B6: vfprintf (vfprintf.c:1619)

==1932== by 0x400FBF: test4 (debug_examples.c:45)

==1932== by 0x401317: main (debug_examples.c:92)

==1932==

...

dcc –valgrind

dcc –valgrind causes valgrind to used to run yuor program,makes
messages more comprehensible for beginner programmers: transbe
run
For example:

$ dcc --valgrind debug_examples.c

% ./a.out 4

Runtime error: uninitialized variable accessed.

Execution stopped in test4() debug_examples.c line 45:

// accessing uninitialized array element (a[4])

for (i = 0; i < 10; i++)

--> printf("%d\n", a[i]);

}

Values when execution stopped:

a = {0, 1, 2, 3, -16776544, 5, 6, 7, 8, 9}

i = 4

a[i] = -16776544

